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Dual Spaces

Proposition. For any two vector spaces V and W, the set of linear functions from V to W, denoted L(V, W),
is a vector space with the following operations:

e Addition: For S,T € L(V,W), define (S + T)(v) = S(v) + T(v) for all v € V.
e Scalar Multiplication: For o € k and T € L(V, W), define (aT')(v) = a(T(v)) for all v € V.

Definition (Dual Vector Space). For any vector space V', the dual vector space V* is the set of all linear

functions from V to k, denoted:
V= L(V, k).

Definition. Given a vector space V', the elements of the dual vector space V* are known as linear functionals.

Proposition. For any basis 5 = {v1,...,v4} of a finite-dimensional vector space V, there exists an isomor-
phism
(g : LV, V) = k4

defined by the formula:
[T]s = ([T(v)lp [T(v2)ls -+ [T(va)lg),
for any T € L(V, V).

Theorem (2.20). Let V and W be finite-dimensional vector spaces over K, and let 8 = {v1,...,v,,} be a
basis for V, and v = {ws,...,w,} be a basis for W. Then there exists a linear isomorphism:

[~y : LV, W) — k™™,

Corollary. If V is a vector space of dimension m and W is a vector space of dimension n, then:

dim(L(V,W)) = mn.



Corollary. If V is a finite-dimensional vector space, then:

dim(V*) = dim(V).

Definition (Dual Basis Vector). Given a finite-dimensional vector space V' and a basis 8 = {v1,...,vq} of
V', the i-th dual basis vector is the linear functional v} : V' — k defined by the formula:

v; (V) = ai,

where ¥ = ajv1 + asvg + - - - + agug is the representation of ¥ € V' in terms of the basis 3.

Theorem (2.24). If V is a finite-dimensional vector space and 8 = {v1,...,v4} is a basis for V, then the
set {vy,v3,...,v5} is a basis for V*. Moreover, for any f € V*, we have:

f=flo)or + fv2)vg + -+ + f(va)vg-

Definition (Dual Basis). If V is a finite-dimensional vector space with basis § = {v1,...,vq}, the basis

pr=A{v1,...,vq}

is called the dual basis.

Theorem (2.25). Let V,W be finite-dimensional vector spaces over k. Let B be a basis for V and C be a
basis for W. Let T': V' — W be a linear transformation. Then, 7% : W* — V*, given by

T*(g) =goT for any g€ W™,

is linear. Moreover,
*1B* t
[T¢ = (IT)5) -

Theorem (2.26). Let V be a finite-dimensional vector space. Then, the map
U:V = (V9*

given by the formula

forv eV and f € V* is a linear isomorphism.

Remark (On Dual and Double Dual Vector Spaces).
dim(V) = dim(V*) = dim((V"*)*),

We also know that V* = L(V, k), so
(V*) = L(V*, k).

The main point is that for any finite-dimensional vector space V', there exists an isomorphism between V/
and its double dual (V*)*. This isomorphism does not depend on the choice of a basis.



Remark. First equality easily shown in hw. Second equality is easy for one inclusion

ker(T™) = (ImT)°.

Im(T*) = (ker T)°.
If W is a subspace of V' where V may actually be infinite dimensional, then

dim(W) + dim(W?) = dim(V).

1 Eigenvalues, Eigenvectors, & Diagonalizability

Definition (Eigenvector/Eigenvalue). Assume T : V — V is linear, where V is a vector space. We say
v € V is an eigenvector of T' with eigenvalue A € k if

T(v)=Av and v#0.

Definition (Diagonalizable). A linear transformation T': V' — V, where V is a finite-dimensional vector
space, is said to be diagonalizable if there exists a basis B of V such that the matrix [T]g is a diagonal
matrix.

Theorem (5.1). Let V be a finite-dimensional vector space and T : V' — V a linear transformation. Then,
T is diagonalizable if and only if there exists a basis B = {v1,...,v4} for V such that for any i € {1,2,...,d},
v; is an eigenvector of T' with some eigenvalue \; € k.

Theorem (5.2). T has A\ € k as an eigenvalue if and only if ker(T' — AI) # {0}.

Corollary. A is an eigenvalue of T if and only if

det(T — \I) = 0.

Definition (Determinant). The determinant det(A) € k is defined as given in the textbook on page 205.

Definition (Characteristic Polynomial). The characteristic polynomial of A € E™*™ is

det(T — A1) € k[A].

Definition (Determinant). The determinant of a linear endomorphism 7' : V' — V of a finite-dimensional
vector space V is defined as
det([T5),

where B is a basis for V' and [Tz is the matrix representation of T' with respect to B.



Theorem (5.3). The characteristic polynomial of T" is a polynomial of degree n, where n = dim(V'), and
the coefficient on ¢" is 1. More precisely, it is (—1)".

Corollary (Number of eigenvalues). Because any polynomial P,(\) can have at most n-roots (over any
field), we conclude:
If dim(V) =n, then T has at most n eigenvalues.

Definition (Polynomial Splits). A polynomial p(t) € k[t] splits over k if there exist ¢,aq,...,aq € k such
that

p(t) =c(t—ay) - (t — aq).

Theorem (5.6). [Diagonalizability and Splitting] If T" is diagonalizable, then the characteristic polynomial
of T splits over k.

Rmk: This is only a one-way implication. You can use the contrapositive to show that T is not
diagonalizable.

Definition (Algebraic Multiplicity). Given an eigenvalue A of T', the algebraic multiplicity of A is the largest
positive integer j such that (+ — \)/ divides the characteristic polynomial of 7T

Definition (Eigenspace). Given an eigenvalue A of T, the eigenspace for X is the span of its eigenvectors
with eigenvalue A. Denote this eigenspace by Vj.
Example: V) = span{eigenvectors of T with eigenvalue \}.

Definition (Geometric Multiplicity). Given an eigenvalue A of T, its geometric multiplicity is dim(Vy,).

Theorem (5.7). If A is an eigenvalue for T' and has algebraic multiplicity m, then
dim(Vy) < m.

Equivalently,
geo(N) < alg()).

Theorem (5.8). T is diagonalizable if and only if for every eigenvalue \; of T', the geometric multiplicity of
A; equals its algebraic multiplicity:
geo(Ai) = alg(Ai).



2 Cayley-Hamilton
Theorem (Cayley-Hamilton). If A € k"*™ and the characteristic polynomial of A is
(—1)dtd +ag 1t + -+ at + ag,
where ag_1,...,a9 € k, then
(—-1)%A% + a4 1 A 4 ar A+ al =0,

where 0 is the zero matrix.
Definition (Nilpotent Maps/Matrices). T is nilpotent if 7% = 0 for some k € N.

Proposition (Eigenvalues of Nilpotent Matrices). Let T be a nilpotent linear map (or matrix). Then, the
only eigenvalue of T is 0.

Proof. Suppose T is nilpotent, so there exists some positive integer k such that 7% = 0.
Let A be an eigenvalue of T with corresponding eigenvector v # 0, i.e.,

T(v) = Av.
Applying T* to v, we get:
THw) =TF YT (v)) = TF () = AT* ().
Repeating this process iteratively, we find:
T"(v) = AFw.
However, since T* = 0, it follows that:
T"(v) = 0 = Ao,

Because v # 0, we must have A* = 0. The only solution in the field of scalars (typically C or R) is A = 0.
Therefore, the only eigenvalue of a nilpotent matrix 7" is 0. O

Corollary (Cayley-Hamilton for Linear Transformations). Let T : V' — V be a linear transformation for V
a finite-dimensional vector space over a field k, and let

p(t) = (*l)dim(v)td +ag-1t" -+ ait + ag

be the characteristic polynomial for 7.
Then, in L(V,V),

p(T) = ()37 gy T 4o 4 0y T +al = 0.

Definition (T-invariant Subspace). A subspace W of V' is called T-invariant if T(W) C W, i.e.,

(T(w) |we W} CW.



Proposition. If vy, vy are eigenvectors for T with possibly different eigenvalues, then span{vi,vs} is T-
invariant.
More generally, if vy, ..., v are eigenvectors for T, then span{vy, ..., v} is T-invariant.

Definition (T-cyclic subspace). The T-cyclic subspace at a vector v € V' is defined as

span{v, T'(v), T?(v), ...} = span{T? (v) : j € Z>0}.

Remark (Infinite Span). Recall that if S is a possibly infinite set of vectors in a vector space W, then

span(S) = Z a;s;: a € R, and only finitely many a; # 0
jES

This allows us to pick or combine finitely many vectors from S in linear combinations.

Theorem (5.21). Let T be a linear operator on a finite-dimensional vector space V', and let W denote the
T-cyclic subspace of V' generated by a nonzero vector v € V. Let k = dim(WW). Then:

(a) {v,T(v),T*(v),...,T* (v)} is a basis for W.
(b) If apv + a1 T(v) + - - + ar_1T* = (v) + T*(v) = 0, then the characteristic polynomial of T'|y is

F(&) = (1) (ap + art + -+ + ap_yt" L+ ¢F)

Theorem (5.20). Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-
invariant subspace of V. Then the characteristic polynomial of T'|y, divides the characteristic polynomial of
T.

Theorem (Characteristic Polynomial of a Cyclic Subspace). Let T : V' — V be a linear operator on a
finite-dimensional vector space V', and let W C V be the T-cyclic subspace generated by a vector v € V. If
{v,T(v), T*(v),...,T" 1(v)} is a basis for W, then:

1. The matrix representation of 7|y with respect to this basis is

0 O 0 —ao
1 0 0 —ai
Ts = o 1 .0 —a2 ,
00 -+ 1 —ap
where T"(v) = —agv — a;T(v) — -+ — @, 1T (v).

2. The characteristic polynomial of T'|y is

fT|W(t) = (—1)n(a0 +ait+---+ an—ltn_l + tn).



Proposition (Characteristic Polynomial Decomposition). Let W C V be a T-invariant subspace of a vector
space V. Then the characteristic polynomial of T satisfies the relation

fr(t) =p(t) - q(t),

where p(t) is the characteristic polynomial of Ty, and q() is the characteristic polynomial of Ty .

Remark. To see this explicitly, take any basis By for W and extend it to a basis By = B; U Q for the entire
vector space V. Then, the matrix representation of T with respect to By is block-upper triangular:

s, = (1) ).

where A; = 0 if and only if span(Q) is T-invariant. The determinant of tIy — [T]|g, decomposes as
det(tly — [Tp,) = det(tlw — [T'|w]s,) - det(tly,w — Asz),

which corresponds to the factorization fr(t) = p(t) - q(¢).

Proposition. If V is T cyclic, then S commutes with T if and only if S = ¢g(T") for polynomial g.
Proof. Assume that V is a cyclic T-module, generated by a vector v, so that
V = span{v, Tv,T%v,...}.

Let m(x) be the minimal polynomial of T with respect to v, i.e., the monic polynomial of smallest degree
such that
m(T)v = 0.

Then every vector in V' can be expressed as a polynomial in 7" of degree less than deg m applied to v.
(=) Suppose that S commutes with T, i.e., ST =TS.
Since V is generated by v, the action of S is determined by its action on v. Let us express Sv as

Sv = p(T)v,

for some polynomial p(z).
We need to show that S = p(T). For any non-negative integer k,

STky = TFSv = T*p(T)v = p(T)T*w.

On the other hand,
ST*y = p(T)T*v.

This equality holds for all k, and since {v, Tv,T?v,...} spans V, it follows that
S =p(T).

Therefore, S is a polynomial in T'.
( <) Conversely, suppose that S = g(T') for some polynomial g(z).
Since polynomials in 7' commute with 7', we have

ST = g(T)T = Tg(T) = TS.

Thus, S commutes with 7.
Combining both directions, we conclude that S commutes with 7" if and only if S = ¢(T") for some
polynomial g. O



3 Inner Product Spaces and Adjoints

L1 Y1
Definition (Standard Inner Product (Real)). Let x = [ @ |,y

T Yn

€ R™. The standard inner

product (dot product) is defined as:

<X7y> :x1y1++xnyn eR.

Remark. For x € R", (x,x) = 23 +--- + 22 = ||x|%.

Definition (Standard Inner Product (Complex)). Let z = [ : | ,w = | : | € C". The standard inner

product of vectors is defined as:
(z, W) =Z1w1 + -+ + Zwy,.

Remark. For any w € C", (w,w) € R>¢, and it is equal to zero if and only if w = 0.

Remark. In R?, the cosine of the angle  between two vectors x = <i1> and y = <Zl> is given by:
2 2

_ (xy)
Ixlllyll

cos 6

Definition (Inner Product). An inner product on an F-vector space V is the data of a scalar (v,w) € F
for every v, w € V, such that the following properties hold:

1. Linearity in the First Variable: For all vi,v5,w € V and a;,as € F,
(01 + agvg, w) = aq (v, w) + as(va, w).

2. Conjugate Symmetry: For all v,w € V,

(v, w) = (w, v).

3. Positive Definiteness: If v € V is a nonzero vector, then
(v,v) > 0,

where the result is a positive real number (even if F' = C).

The inner product is a map (-,-) : VxV — F.

Definition (Inner Product Space). An inner product space is the data of a vector space V over F and an
inner product on V.



Corollary (Orthogonal Basis Expansion). Assume V is an inner product space (IPS), and let {vq,...,v4}
be an orthonormal basis (ONB) for V. Then, for any v € V, we have:

v = (v,v1)v1 + (v, V2)v2 + - - - + (V,Va)Vq.

Theorem (Gram-Schmidt Process). Let S = {v1,...,v,} be a set of a finite number of vectors in an inner
product space (IPS) V. Then, there exists an orthonormal set of vectors {v,41,...,v4} C V such that
{v1,.. U, Vry1,...,0q} forms an orthonormal basis (ONB) for V.

Definition (Orthogonal Complement). Given a subspace W of an inner product space V, its orthogonal
complement is defined as:
Wt ={veV|(ww) =0 foralweW}.

Theorem. If W is any subspace of a finite-dimensional inner product space (IPS) V, then:
V=waw,

where W is the orthogonal complement of W.

Proof (Sketch). Use the Gram-Schmidt process to construct an orthonormal basis {w,wa,...,w,} for W.
Then, extend this basis to an orthonormal basis for V' by adding vectors from W=. The resulting basis
{wi, ..., We, Wry1, ..., wq} satisfies the decomposition V =W @ W+, O

Theorem. Fix an inner product space V. The function P : V — V* defined by:
P(v)(w) = (w,v) for v,w €V,

is a bijection. However, P is not linear over C if V is a complex vector space.

Theorem. Let T : V — V be a linear endomorphism of a finite-dimensional inner product space (IPS) V.
Then, there exists a unique linear map 7" : V' — V such that:

(T(v),w) = (v, T*(w)) forall v,we V.

This function 7™ is linear.

Definition (Adjoint or Conjugate Transpose). The linear operator T* : V — V is called the conjugate
transpose or adjoint of T.

Theorem. If we choose a basis B = {v1,...,v4} for a finite-dimensional inner product space (IPS) V, then
the conjugate transpose of T' satisfies:
[T*]5 = ([T]s)",

where ([T]5)" = ([T]g)7 is the transpose (or conjugate transpose in the complex case) of the matrix repre-
sentation of T in the basis B.



Theorem. Let T,U : V — V be linear operators on a finite-dimensional inner product space (IPS) V.
Then, the following properties hold:

1. (U+T)"=U*+T",

2. If « € F, then (aT)* = aT™,
3. (UoT)* =T* o U*,

4 (T*)* =T,

5. I* =1, where [ is the identity operator.

Remark. These properties hold because for any composition of operators, (AB)* = B*A*, which can be
verified using the definition of the adjoint:

((AB)v,w) = (v, (AB)*w) = (v, B* A*w).

4 Spectral Theorem

Definition (Normal Operator). A linear operator T : V' — V on a finite-dimensional inner product space
(IPS) V is called normal if:
TTr* =T*T.

Theorem. If B is an orthonormal basis of V', then the isomorphism Cg : V — F¢ has the property that the
inner product (v, w) is the standard inner product Cpv - Cgw.

Theorem. If B is an orthonormal basis for V', then the matrix representation of T* satisfies:
[T*]s = [T)5 ifF=R,

and
[T*)s = [T]H ifF=C,

where [T is the conjugate transpose of [T5.

Proof. Let B ={v1,...,v4} be the orthonormal basis. For any j € {1,2,...,d},

By the definition of the matrix representation,

d

T"(vj) = Z<T*(vj),vi>vi-

Using the definition of the adjoint,



Since (T'(v;),vj) = ([T]B);i, we obtain

d d

i=1 i=1

Thus, [T%]s = [T]5 if F = R and [T*]z = [T)# if F = C. O

Theorem. Assume F = C. Then T is normal if and only if there exists an orthonormal basis (ONB) of
eigenvectors of 7.
(This relies on F = C because polynomials split.)

Definition. We say that T is self-adjoint if T' = T™.
Theorem. If F = R, then T is self-adjoint if and only if there exists an ONB of eigenvectors.
Remark. Self-adjoint = Normal.

Theorem. Assume T is normal. Then we have:
(@) |T(w)|| = |IT*(v)|| for all v € V.
(b) T — ¢l is normal for all c € F.

(c) If v € V is an eigenvector for T' with eigenvalue A, then v is also an eigenvector for 7" with eigenvalue

A

(d) If vy, vy are eigenvectors for T' with distinct eigenvalues, then (vq,vy) = 0.

Theorem. Let T be a normal operator on a finite-dimensional complex inner product space V', and let W
be a subspace of V. If W is T-invariant, then W is also T*-invariant.

Lemma (Normality and polynomial existence). T is normal if and only if there exists a polynomial p such
that T* = p(T). B
The forward direction relies on the spectral theorem and polynomial interpolation, i.e., p(A;) = \;

Theorem (6.14). Let S be a linear endomorphism of a finite-dimensional vector space W over an arbitrary
field k such that the characteristic polynomial of S splits over k. Then, there exists a basis 5 of W such that
the matrix [S]s is upper triangular.

Moreover, due to Schur’s Theorem, if 7" : V — V is a linear operator such that its characteristic
polynomial splits, then there exists an orthonormal basis 8 for V' such that [T]s is upper triangular.

Theorem (6.16). Assume F' = C. Then T has an orthonormal basis of eigenvectors if and only if T is
normal.

Theorem (6.17). Assume F = R. Then T has an orthonormal basis of eigenvectors if and only if T is
self-adjoint.
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Definition. Assume T is a linear endomorphism on an inner product space V. Assume T preserves all
lengths, i.e., for all v € V,
(v,v) = (T(v), T (v)).

If our ground field is R, we say T is orthogonal. If F' = C, we say that T is unitary.
Proposition. Any orthogonal or unitary transformation is always invertible if V' is finite-dimensional.

Proof. Suppose v € ker(T) for an orthogonal (or unitary) operator T. Then:
0= T = llv|| = v=0.
This implies T is injective. Since V is finite-dimensional, injectivity implies surjectivity, so T is invertible. [J

Theorem (Theorem 6.18). Assume 7 : V — V is a linear endomorphism of a finite-dimensional inner
product space (fdIPS). The following conditions are equivalent:

(a) T*T = I.

(b) TT* =1.

(¢) (T(v), T(w)) = (v,w) for any v,w € V.
)

(d) If B = {u1,...,uq} is an orthonormal basis (ONB) of V, then T(8) = {T'(u1),...,T(uq)} is an ONB
of V.

(e) There exists an ONB g for V such that T'(3) is an ONB for V.
(f) T is orthogonal if F = R or unitary if F = C.

Lemma. Let U : V — V be a skew-self-adjoint linear operator on a finite-dimensional inner product space
(fdIPS) V such that:
(v, U(w)) =0 forallvelV.

Then U = 0.

Proof. Assume v € V. We want to show that U(v) =
Consider:
0= (v+U(),Uv + U()).

Expanding the inner product:
(v, U(v)) + (v, U*(v)) + (U(v), U(v)) + (U (v),U*(v)).
Using linearity and self-adjoint properties:
(v,U%(0)) +(U(v), U(v)) = 2(U(v), U(v)).
Since the left-hand side is zero, we conclude:
U(w)=0 foralvelV.

Thus, U = 0 as a linear operator.
As a consequence, if U = I —T*T, we obtain:

I=T"T.
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Corollary. Let T': V — V be a linear endomorphism of a finite-dimensional inner product space (fdIPS)
over R. Then T is self-adjoint and orthogonal if and only if there exists an orthonormal basis (ONB) of
eigenvectors

{vi,...,vq}

of V such that:
T(v;)) =41 forallie{l,...,d}.

Definition (Projection onto a Subspace). Let V' be a vector space, and let Wi, W5 be subspaces of V' such
that:
V=W, & Ws.

The projection of V' onto W1, along Wy, is the linear map projy,, : V — Wy given by:
projy, (v) = wr,

where v = w; + wy with w; € Wi and wy € Wh.
Note: The kernel and image of this projection satisfy:

ker(projy, ) = Wa, Im(projy, ) = Wi.
Terminology: We will sometimes simply say that a linear map T : V — V is a projection if it is a

projection onto its image along ker(7").

Proposition. If V is a finite-dimensional inner product space (fdIPS) and W C V is a subspace, then:

V=waeWw
Proof. Assume {uq,...,u} is an orthonormal basis (ONB) for W. Extend this to an ONB for V by adding
vectors {Ug41, ..., U}
For any v € V, there exist scalars aq,...,a, € F such that:

v = Uyt g+ (Qppi U o+ Q).

The first sum belongs to W, and the second sum belongs to W+=.
We claim:
ajuy + -+ agup €W, agppiugsr + -+ apu, € wt.

Moreover, this decomposition is unique, ensuring that:

V=Waowt

Definition (Orthogonal Projection). If V' is a finite-dimensional inner product space (fdIPS) and W C V
is a subspace, the orthogonal projection onto W is defined as the projection onto W along W=,

Theorem (Spectral Theorem, Theorem 6.25). Assume T : V' — V is a linear endomorphism of a finite-
dimensional inner product space (fdIPS) V' that is self-adjoint. If F = R or if T is normal when F = C,
then:
Let W1, ..., W, denote the eigenspaces corresponding to the distinct eigenvalues Aq,..., A, € F.
Furthermore, for each ¢ € {1,...,7}, let T; : V' — V denote the orthogonal projection onto W;. Then the
following hold:

13



H V=W eWed- - - W,
(ii) For each fixed i € {1,...,r},

W= | EPWw;

J#i

(i) For all i,j € {1,...,r},
T%Tj = 5ijTj-

(iv) The operator T' decomposes as:
T=MI~+- -+ XNT;.

(v) The identity operator decomposes as:

I=Ty+ - +T.

Definition (Spectrum). The set of eigenvalues of an operator T, as given in the spectral theorem, is called
the spectrum of T.

Corollary. A linear endomorphism T : V' — V of a finite-dimensional inner product space (fdIPS) V is
unitary if and only if T is normal and all eigenvalues of T have length 1.

Remark. If z € C and z = a + bi, then the inverse of z is given by:

In particular, if |z| = 1, then:

Corollary. Assume V is a finite-dimensional inner product space (fdIPS), and 7" : V — V is a linear
endomorphism of V. Then, T is self-adjoint if and only if 7" is normal and all eigenvalues of T are real.

5 Geometry of Orthogonal Operators

Theorem (Theorem 6.23: Orthogonal Real Transformations in two dimensions). Assume 7' : R? — R? is
an orthogonal linear transformation. What are all possible such linear transformations?

1. The determinant of T satisfies:
det(T") = £1.

2. If det(T") = 1, then T is a rotation, and can be expressed as:

__|cos@ —sinf
" |sinf cos@

for some angle 6.
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Definition (Reflection). The reflection about the line span { [ﬂ } is the function:

R 0,1)} * R? — R?

span{ (
given by the transformation matrix:

1 0
Rspan{(O,l)} = |:0 _1:| .

Definition (Reflection Across a Line). Reflection across the line

cos
SPAl Y lging

for some 6 € R is the function R : R? — R? given by left multiplication by:

R |cos 6 —sinf| (1 O cosf sinf
" |sinf cosf | |0 —1| |—sin® cosf|’
Expanding the computation:

{cos@ —sinﬂ [1 0] [cos@ sin 0 ]

sinf cosf | [0 —1]  |sinf —cosh

Multiplying with the final matrix:

cosf sind cosf sinf| [cos? 6 — sin 0 2sinf cosf
sinf —cos@| |—sinf cos@ | 2sinf cosd sin? 0 — cos?

Using trigonometric identities, we simplify:

cos20  sin260
sin20 —cos20|°

Thus, the reflection matrix is:

cos260  sin26
sin20 —cos260|°

Theorem (Theorem 6.23). Let T : R? — R? be an orthogonal linear endomorphism of R? with its standard

inner product. Then, exactly one of the following holds:

1. T is a rotation by some angle 6 € [0, 27], and det(T) = 1.

2. T is a reflection about some line passing through the origin, and det(T") = —1.

Definition (Rotations and Reflections in a Subspace). Let W be a two-dimensional subspace of an inner
product space V. We say that T : W — W is a rotation if there exists some orthonormal basis 5 = {u1, us}

such that the matrix representation of 7" in this basis is:

cos) —sinf
sinf  cos6

[Ts = {

for some 6 € [0, 27].

15



If T:W — W is a linear endomorphism and there exists an orthonormal basis of W such that:

1 0
then we say that T is a reflection.
If W is a one-dimensional subspace and T' : W — W is the function satisfying T'(w) = —w for all w € W,
we say that T is a reflection. On the other hand, if T'(w) = w for all w € W, we say that T is a rotation.

Corollary (Corollary 6.46). The composite of a reflection and a rotation is a reflection.

Lemma. If T: V — V is an orthogonal endomorphism on a finite-dimensional inner product space (fdIPS)
V', then there exists some subspace W such that:

1< dim(W) <2

and W is T-invariant if dim(V') > 1.

Theorem. Assume T : V — V is an orthogonal operator on a finite-dimensional nonzero real inner product
space (RIPS). Then, there exist mutually orthogonal subspaces Wy, W, ..., W,, such that all the following
hold:

(i) dim(W;) € {1,2} for all i € {1,...,m}.
(ii) W; is T-invariant for all ¢ € {1,...,m}.

(i) (Knowing T'|w, : W; — W;) we have the decomposition:

Theorem. Moreover:

(A) The number of subspaces W; for which T|w, is a reflection (as opposed to a rotation) is even if
det(T) =1 and odd if det(T") = —1.

(B) In fact, there exists a decomposition Wy,..., W, C V satisfying (i)—(iii) such that, for at most one
ie{1,...,m}, T|w, is a reflection.

Example. Using Theorem 6.47, set up a look at the case where dim(V) = 3. One of the following holds:
Case 1: If n = 3, then dim(W;) =1 for ¢ € {1,2,3}. So the matrix of T is

+1 0 0
0 £1 0
0 0 =1

with respect to some orthonormal basis.
Case 2: If n = 2, then there exists an orthonormal basis such that the restriction of T has the matrix

(@ &)

where R is either a reflection or a rotation.
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6 Bilinear Forms
Definition. A bilinear form on a k-vector space V is a function
H:VxV =k
such that for any v1,ve,w € V and scalars «, 8 € k, the following hold:
(a) H(awy + fug,w) = aH(vi,w) + fH(va, w)
(b) H(w,av; + fug) = aH(w,v1) + SH(w,vy)

Example. If A € k%% we can define a bilinear form
H: k" x k" =k

by the formula
H(v,w) =v" Aw.

(Proof left as an exercise.)

Definition. Given two bilinear forms on a vector space V', say H;y, Hy, their sum is the function
(H1+H2)IVXV—>]€

such that
(H1+H2)(vvw):Hl(vvw)+H2(v7w)v V’U,'UJGV

If H is any bilinear form and « € k, the scalar product aH : V x V — k is the function

(aH)(v,w) = a(H (v, w)).

Theorem (6.31 / Exercise). The sum of any two bilinear forms is a bilinear form, and the scalar product
of any scalar and any bilinear form is a bilinear form. Moreover, if B(V') is the set of bilinear forms on a
vector space, then B(V') has a vector space structure over k.

Definition. Assume V is a finite-dimensional vector space with basis
B={vi,...,vq}.

Then, the matrix representation with respect to B of a bilinear form H : V x V — k is the matrix whose
(z,7) entry is given by
Hij :H(UZ‘,’U]‘), VZ,] S {17,d}

Theorem. For every basis B of a finite-dimensional vector space V' and every bilinear form H : V xV — k,

we use the notation
Ts(H) € kx4

to denote the matrix representation of H.
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Theorem (Theorem 6.32). If V' is a finite-dimensional vector space and
B ={v1,...,v4}

is a basis for V, then
Ts :B(V) — k4

is an isomorphism of vector spaces.

Corollary (2-3). Let V be a finite-dimensional vector space, and let H be a bilinear form on V. If B =
{v1,...,vq} is a basis for V, then
H(v,w) = [v]gUs(H)[uw]s,

where W (H) is the matrix representation of H in the basis B.
In particular, if V' = k% and B is the standard basis, then any bilinear form H : k% x k% — k has the

property that
H(x,y) = 2" Tab(H)y.

Theorem (6.33). Let V be a finite-dimensional vector space, and let B, 8’ be two bases for V. If H is a
bilinear form on V', then its matrix representation changes as follows:

Up/(H) = Ik 5gUs(H)Ig 5.

Proof. Let B = {v1,...,vq4} and let B’ = {w1,...,wq}. Then, for any w;,w; € B’, we express the bilinear
form as:
H(wi, wy) = [wily Yp (H)[wy]s-

Since the basis transformation satisfies [w;]p = In —pw;]s, we substitute:
H(w;,w;) = (I swils)" Vs (H)(Is—5w)]s)-

Rewriting,
H(w;,w;) = [wil I 5 Vs (H) 5 5[w;]s.

Since this holds for all w;, w; € V', we conclude:

U (H) = I} 5Vs(H)Ip 5.

Definition. Let P,Q € k%*? for d > 2, or more generally for d > 0 in an infinite-dimensional setting. We
say P and (Q are congruent if there exists an invertible matrix M such that

P=M"QM.

Definition. A bilinear form H : V x V — k is symmetric if

H(v,w) = H(w,v) foralv,weV.
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Theorem (6.34). Let H be a bilinear form on a finite-dimensional vector space V, and let 5 be an ordered
basis for V. Then H is symmetric if and only if 5(H) is symmetric.

Lemma. Let H be a nonzero symmetric bilinear form on a vector space V over a field F' not of characteristic
two. Then there exists a vector z € V such that H(z,z) # 0.

Theorem (Theorem 6.35). Let V be a finite-dimensional vector space over a field F' not of characteristic
two. Then every symmetric bilinear form on V is diagonalizable.

Proof. We use mathematical induction on n = dim(V'). If n = 1, then every element of B(V) is diagonaliz-
able.

Now suppose that the theorem is valid for vector spaces of dimension less than n for some fixed integer
n > 1, and suppose that dim(V') = n. If H is the zero bilinear form on V, then trivially H is diagonalizable;
so suppose that H is a nonzero symmetric bilinear form on V.

By the lemma, there exists a nonzero vector € V such that H(z,x) # 0. Recall the function L, : V — F
defined by

L,(y)=H(xz,y) forallyeV.

By a standard property of bilinear forms, L, is linear. Furthermore, since L,(x) = H(z,x) # 0, we have
that L, is nonzero. Consequently, rank(L,) = 1, and hence dim(N(L;)) =n — 1.
The restriction of H to N(L,) is obviously a symmetric bilinear form on a vector space of dimension
n — 1. Thus, by the induction hypothesis, there exists an ordered basis {vi,vs,...,v,—1} for N(L,) such
that
H(vi,v5) =0 fori#j, (1<4,j<n-1).

Set v, = x. Then v, ¢ N(L,), and so 8 = {v1,va,...,v,} is an ordered basis for V. In addition,
H(vi,vp) = H(vp,v;) =0 fori=1,2,...,n—1.

We conclude that 1g(H) is a diagonal matrix, and therefore H is diagonalizable. O

Corollary. Let F be a field that is not of characteristic two. If A € M, «,(F) is a symmetric matrix, then
A is congruent to a diagonal matrix.

Proposition. Let k = Z/2Z. The function
H:k %k =k

is given by
H ((xlva)v (yla y2)) =T1Y2 + T2y1-

I claim H is symmetric but not diagonalizable.
(H is symmetric)

Definition. The rank of a bilinear form
H:VxV =k

on a finite-dimensional vector space V' is the rank of ¢g(H) for any basis 5 of V.

19



