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Dual Spaces

Proposition. For any two vector spaces V andW , the set of linear functions from V toW , denoted L(V,W ),
is a vector space with the following operations:

• Addition: For S, T ∈ L(V,W ), define (S + T )(v) = S(v) + T (v) for all v ∈ V .

• Scalar Multiplication: For α ∈ k and T ∈ L(V,W ), define (αT )(v) = α(T (v)) for all v ∈ V .

Definition (Dual Vector Space). For any vector space V , the dual vector space V ∗ is the set of all linear
functions from V to k, denoted:

V ∗ := L(V, k).

Definition. Given a vector space V , the elements of the dual vector space V ∗ are known as linear functionals.

Proposition. For any basis β = {v1, . . . , vd} of a finite-dimensional vector space V , there exists an isomor-
phism

[−]β : L(V, V ) → kd×d

defined by the formula:
[T ]β =

(
[T (v1)]β [T (v2)]β · · · [T (vd)]β

)
,

for any T ∈ L(V, V ).

Theorem (2.20). Let V and W be finite-dimensional vector spaces over K, and let β = {v1, . . . , vm} be a
basis for V , and γ = {w1, . . . , wn} be a basis for W . Then there exists a linear isomorphism:

[−]γ,β : L(V,W ) → kn×m.

Corollary. If V is a vector space of dimension m and W is a vector space of dimension n, then:

dim(L(V,W )) = mn.
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Corollary. If V is a finite-dimensional vector space, then:

dim(V ∗) = dim(V ).

Definition (Dual Basis Vector). Given a finite-dimensional vector space V and a basis β = {v1, . . . , vd} of
V , the i-th dual basis vector is the linear functional v∗i : V → k defined by the formula:

v∗i (v⃗) = αi,

where v⃗ = α1v1 + α2v2 + · · ·+ αdvd is the representation of v⃗ ∈ V in terms of the basis β.

Theorem (2.24). If V is a finite-dimensional vector space and β = {v1, . . . , vd} is a basis for V , then the
set {v∗1 , v∗2 , . . . , v∗d} is a basis for V ∗. Moreover, for any f ∈ V ∗, we have:

f = f(v1)v
∗
1 + f(v2)v

∗
2 + · · ·+ f(vd)v

∗
d.

Definition (Dual Basis). If V is a finite-dimensional vector space with basis β = {v1, . . . , vd}, the basis

β∗ = {v∗1 , . . . , v∗d}

is called the dual basis.

Theorem (2.25). Let V,W be finite-dimensional vector spaces over k. Let B be a basis for V and C be a
basis for W . Let T : V →W be a linear transformation. Then, T ∗ :W ∗ → V ∗, given by

T ∗(g) = g ◦ T for any g ∈W ∗,

is linear. Moreover,

[T ∗]B
∗

C∗ =
(
[T ]CB

)t
.

Theorem (2.26). Let V be a finite-dimensional vector space. Then, the map

Ψ : V → (V ∗)∗

given by the formula
Ψ(v)(f) = f(v),

for v ∈ V and f ∈ V ∗, is a linear isomorphism.

Remark (On Dual and Double Dual Vector Spaces).

dim(V ) = dim(V ∗) = dim((V ∗)∗),

We also know that V ∗ = L(V, k), so
(V ∗)∗ = L(V ∗, k).

The main point is that for any finite-dimensional vector space V , there exists an isomorphism between V
and its double dual (V ∗)∗. This isomorphism does not depend on the choice of a basis.
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Remark. First equality easily shown in hw. Second equality is easy for one inclusion

ker(T ∗) = (ImT )◦.

Im(T ∗) = (kerT )◦.

If W is a subspace of V where V may actually be infinite dimensional, then

dim(W ) + dim(W 0) = dim(V ).

1 Eigenvalues, Eigenvectors, & Diagonalizability

Definition (Eigenvector/Eigenvalue). Assume T : V → V is linear, where V is a vector space. We say
v ∈ V is an eigenvector of T with eigenvalue λ ∈ k if

T (v) = λv and v ̸= 0.

Definition (Diagonalizable). A linear transformation T : V → V , where V is a finite-dimensional vector
space, is said to be diagonalizable if there exists a basis B of V such that the matrix [T ]B is a diagonal
matrix.

Theorem (5.1). Let V be a finite-dimensional vector space and T : V → V a linear transformation. Then,
T is diagonalizable if and only if there exists a basis B = {v1, . . . , vd} for V such that for any i ∈ {1, 2, . . . , d},
vi is an eigenvector of T with some eigenvalue λi ∈ k.

Theorem (5.2). T has λ ∈ k as an eigenvalue if and only if ker(T − λI) ̸= {0}.

Corollary. λ is an eigenvalue of T if and only if

det(T − λI) = 0.

Definition (Determinant). The determinant det(A) ∈ k is defined as given in the textbook on page 205.

Definition (Characteristic Polynomial). The characteristic polynomial of A ∈ kn×n is

det(T − λI) ∈ k[λ].

Definition (Determinant). The determinant of a linear endomorphism T : V → V of a finite-dimensional
vector space V is defined as

det([T ]B),

where B is a basis for V and [T ]B is the matrix representation of T with respect to B.
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Theorem (5.3). The characteristic polynomial of T is a polynomial of degree n, where n = dim(V ), and
the coefficient on tn is 1. More precisely, it is (−1)n.

Corollary (Number of eigenvalues). Because any polynomial Pn(λ) can have at most n-roots (over any
field), we conclude:

If dim(V ) = n, then T has at most n eigenvalues.

Definition (Polynomial Splits). A polynomial p(t) ∈ k[t] splits over k if there exist c, a1, . . . , ad ∈ k such
that

p(t) = c(t− a1) · · · (t− ad).

Theorem (5.6). [Diagonalizability and Splitting] If T is diagonalizable, then the characteristic polynomial
of T splits over k.

Rmk: This is only a one-way implication. You can use the contrapositive to show that T is not
diagonalizable.

Definition (Algebraic Multiplicity). Given an eigenvalue λ of T , the algebraic multiplicity of λ is the largest
positive integer j such that (t− λ)j divides the characteristic polynomial of T .

Definition (Eigenspace). Given an eigenvalue λ of T , the eigenspace for λ is the span of its eigenvectors
with eigenvalue λ. Denote this eigenspace by Vλ.

Example: Vλ = span{eigenvectors of T with eigenvalue λ}.

Definition (Geometric Multiplicity). Given an eigenvalue λ of T , its geometric multiplicity is dim(Vλ).

Theorem (5.7). If λ is an eigenvalue for T and has algebraic multiplicity m, then

dim(Vλ) ≤ m.

Equivalently,
geo(λ) ≤ alg(λ).

Theorem (5.8). T is diagonalizable if and only if for every eigenvalue λi of T , the geometric multiplicity of
λi equals its algebraic multiplicity:

geo(λi) = alg(λi).
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2 Cayley-Hamilton

Theorem (Cayley-Hamilton). If A ∈ kn×n and the characteristic polynomial of A is

(−1)dtd + ad−1t
d−1 + · · ·+ a1t+ a0,

where ad−1, . . . , a0 ∈ k, then

(−1)dAd + ad−1A
d−1 + · · ·+ a1A+ a0I = 0,

where 0 is the zero matrix.

Definition (Nilpotent Maps/Matrices). T is nilpotent if T k = 0 for some k ∈ N.

Proposition (Eigenvalues of Nilpotent Matrices). Let T be a nilpotent linear map (or matrix). Then, the
only eigenvalue of T is 0.

Proof. Suppose T is nilpotent, so there exists some positive integer k such that T k = 0.
Let λ be an eigenvalue of T with corresponding eigenvector v ̸= 0, i.e.,

T (v) = λv.

Applying T k to v, we get:

T k(v) = T k−1(T (v)) = T k−1(λv) = λT k−1(v).

Repeating this process iteratively, we find:

T k(v) = λkv.

However, since T k = 0, it follows that:

T k(v) = 0 = λkv.

Because v ̸= 0, we must have λk = 0. The only solution in the field of scalars (typically C or R) is λ = 0.
Therefore, the only eigenvalue of a nilpotent matrix T is 0.

Corollary (Cayley-Hamilton for Linear Transformations). Let T : V → V be a linear transformation for V
a finite-dimensional vector space over a field k, and let

p(t) = (−1)dim(V )td + ad−1t
d−1 + · · ·+ a1t+ a0

be the characteristic polynomial for T .
Then, in L(V, V ),

p(T ) = (−1)dim(V )T d + ad−1T
d−1 + · · ·+ a1T + a0I = 0.

Definition (T-invariant Subspace). A subspace W of V is called T -invariant if T (W ) ⊆W , i.e.,

{T (w) | w ∈W} ⊆W.
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Proposition. If v1, v2 are eigenvectors for T with possibly different eigenvalues, then span{v1, v2} is T -
invariant.

More generally, if v1, . . . , vk are eigenvectors for T , then span{v1, . . . , vk} is T -invariant.

Definition (T-cyclic subspace). The T -cyclic subspace at a vector v ∈ V is defined as

span{v, T (v), T 2(v), . . . } = span{T j(v) : j ∈ Z≥0}.

Remark (Infinite Span). Recall that if S is a possibly infinite set of vectors in a vector space W , then

span(S) =

∑
j∈S

αjsj : αj ∈ R, and only finitely many αj ̸= 0

 .

This allows us to pick or combine finitely many vectors from S in linear combinations.

Theorem (5.21). Let T be a linear operator on a finite-dimensional vector space V , and let W denote the
T -cyclic subspace of V generated by a nonzero vector v ∈ V . Let k = dim(W ). Then:

(a) {v, T (v), T 2(v), . . . , T k−1(v)} is a basis for W .

(b) If a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0, then the characteristic polynomial of T |W is

f(t) = (−1)k
(
a0 + a1t+ · · ·+ ak−1t

k−1 + tk
)
.

Theorem (5.20). Let T be a linear operator on a finite-dimensional vector space V , and let W be a T -
invariant subspace of V . Then the characteristic polynomial of T |W divides the characteristic polynomial of
T .

Theorem (Characteristic Polynomial of a Cyclic Subspace). Let T : V → V be a linear operator on a
finite-dimensional vector space V , and let W ⊆ V be the T -cyclic subspace generated by a vector v ∈ V . If
{v, T (v), T 2(v), . . . , Tn−1(v)} is a basis for W , then:

1. The matrix representation of T |W with respect to this basis is

[T ]B =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 ,

where Tn(v) = −a0v − a1T (v)− · · · − an−1T
n−1(v).

2. The characteristic polynomial of T |W is

fT |W (t) = (−1)n(a0 + a1t+ · · ·+ an−1t
n−1 + tn).
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Proposition (Characteristic Polynomial Decomposition). LetW ⊆ V be a T -invariant subspace of a vector
space V . Then the characteristic polynomial of T satisfies the relation

fT (t) = p(t) · q(t),

where p(t) is the characteristic polynomial of T |W , and q(t) is the characteristic polynomial of T |V/W .

Remark. To see this explicitly, take any basis B1 for W and extend it to a basis B2 = B1 ∪Q for the entire
vector space V . Then, the matrix representation of T with respect to B2 is block-upper triangular:

[T ]B2
=

(
[T |W ]B1 A1

0 A2

)
,

where A1 = 0 if and only if span(Q) is T -invariant. The determinant of tIV − [T ]B2
decomposes as

det(tIV − [T ]B2
) = det(tIW − [T |W ]B1

) · det(tIV/W −A2),

which corresponds to the factorization fT (t) = p(t) · q(t).

Proposition. If V is T cyclic, then S commutes with T if and only if S = g(T ) for polynomial g.

Proof. Assume that V is a cyclic T -module, generated by a vector v, so that

V = span{v, Tv, T 2v, . . . }.

Let m(x) be the minimal polynomial of T with respect to v, i.e., the monic polynomial of smallest degree
such that

m(T )v = 0.

Then every vector in V can be expressed as a polynomial in T of degree less than degm applied to v.
( =⇒ ) Suppose that S commutes with T , i.e., ST = TS.
Since V is generated by v, the action of S is determined by its action on v. Let us express Sv as

Sv = p(T )v,

for some polynomial p(x).
We need to show that S = p(T ). For any non-negative integer k,

ST kv = T kSv = T kp(T )v = p(T )T kv.

On the other hand,
ST kv = p(T )T kv.

This equality holds for all k, and since {v, Tv, T 2v, . . . } spans V , it follows that

S = p(T ).

Therefore, S is a polynomial in T .
( ⇐= ) Conversely, suppose that S = g(T ) for some polynomial g(x).
Since polynomials in T commute with T , we have

ST = g(T )T = Tg(T ) = TS.

Thus, S commutes with T .
Combining both directions, we conclude that S commutes with T if and only if S = g(T ) for some

polynomial g.
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3 Inner Product Spaces and Adjoints

Definition (Standard Inner Product (Real)). Let x =

x1...
xn

 ,y =

y1...
yn

 ∈ Rn. The standard inner

product (dot product) is defined as:

⟨x,y⟩ = x1y1 + · · ·+ xnyn ∈ R.

Remark. For x ∈ Rn, ⟨x,x⟩ = x21 + · · ·+ x2n = ∥x∥2.

Definition (Standard Inner Product (Complex)). Let z =

z1...
zn

 ,w =

w1

...
wn

 ∈ Cn. The standard inner

product of vectors is defined as:
⟨z,w⟩ = z1w1 + · · ·+ znwn.

Remark. For any w ∈ Cn, ⟨w,w⟩ ∈ R≥0, and it is equal to zero if and only if w = 0.

Remark. In R2, the cosine of the angle θ between two vectors x =

(
x1
x2

)
and y =

(
y1
y2

)
is given by:

cos θ =
⟨x,y⟩
∥x∥∥y∥

.

Definition (Inner Product). An inner product on an F -vector space V is the data of a scalar ⟨v, w⟩ ∈ F
for every v, w ∈ V , such that the following properties hold:

1. Linearity in the First Variable: For all v1, v2, w ∈ V and α1, α2 ∈ F ,

⟨α1v1 + α2v2, w⟩ = α1⟨v1, w⟩+ α2⟨v2, w⟩.

2. Conjugate Symmetry: For all v, w ∈ V ,

⟨v, w⟩ = ⟨w, v⟩.

3. Positive Definiteness: If v ∈ V is a nonzero vector, then

⟨v, v⟩ > 0,

where the result is a positive real number (even if F = C).

The inner product is a map ⟨·, ·⟩ : V × V → F .

Definition (Inner Product Space). An inner product space is the data of a vector space V over F and an
inner product on V .
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Corollary (Orthogonal Basis Expansion). Assume V is an inner product space (IPS), and let {v1, . . . , vd}
be an orthonormal basis (ONB) for V . Then, for any v ∈ V , we have:

v = ⟨v, v1⟩v1 + ⟨v, v2⟩v2 + · · ·+ ⟨v, vd⟩vd.

Theorem (Gram-Schmidt Process). Let S = {v1, . . . , vm} be a set of a finite number of vectors in an inner
product space (IPS) V . Then, there exists an orthonormal set of vectors {vr+1, . . . , vd} ⊂ V such that
{v1, . . . , vr, vr+1, . . . , vd} forms an orthonormal basis (ONB) for V .

Definition (Orthogonal Complement). Given a subspace W of an inner product space V , its orthogonal
complement is defined as:

W⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈W}.

Theorem. If W is any subspace of a finite-dimensional inner product space (IPS) V , then:

V =W ⊕W⊥,

where W⊥ is the orthogonal complement of W .

Proof (Sketch). Use the Gram-Schmidt process to construct an orthonormal basis {w1, w2, . . . , wr} for W .
Then, extend this basis to an orthonormal basis for V by adding vectors from W⊥. The resulting basis
{w1, . . . , wr, wr+1, . . . , wd} satisfies the decomposition V =W ⊕W⊥.

Theorem. Fix an inner product space V . The function P : V → V ∗, defined by:

P (v)(w) = ⟨w, v⟩ for v, w ∈ V,

is a bijection. However, P is not linear over C if V is a complex vector space.

Theorem. Let T : V → V be a linear endomorphism of a finite-dimensional inner product space (IPS) V .
Then, there exists a unique linear map T ∗ : V → V such that:

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ for all v, w ∈ V.

This function T ∗ is linear.

Definition (Adjoint or Conjugate Transpose). The linear operator T ∗ : V → V is called the conjugate
transpose or adjoint of T .

Theorem. If we choose a basis B = {v1, . . . , vd} for a finite-dimensional inner product space (IPS) V , then
the conjugate transpose of T satisfies:

[T ∗]B = ([T ]B)
†,

where ([T ]B)
† = ([T ]B)

T is the transpose (or conjugate transpose in the complex case) of the matrix repre-
sentation of T in the basis B.
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Theorem. Let T,U : V → V be linear operators on a finite-dimensional inner product space (IPS) V .
Then, the following properties hold:

1. (U + T )∗ = U∗ + T ∗,

2. If α ∈ F , then (αT )∗ = αT ∗,

3. (U ◦ T )∗ = T ∗ ◦ U∗,

4. (T ∗)∗ = T ,

5. I∗ = I, where I is the identity operator.

Remark. These properties hold because for any composition of operators, (AB)∗ = B∗A∗, which can be
verified using the definition of the adjoint:

⟨(AB)v, w⟩ = ⟨v, (AB)∗w⟩ = ⟨v,B∗A∗w⟩.

4 Spectral Theorem

Definition (Normal Operator). A linear operator T : V → V on a finite-dimensional inner product space
(IPS) V is called normal if:

TT ∗ = T ∗T.

Theorem. If B is an orthonormal basis of V , then the isomorphism CB : V → Fd has the property that the
inner product ⟨v, w⟩ is the standard inner product CBv · CBw.

Theorem. If B is an orthonormal basis for V , then the matrix representation of T ∗ satisfies:

[T ∗]B = [T ]TB if F = R,

and
[T ∗]B = [T ]HB if F = C,

where [T ]HB is the conjugate transpose of [T ]B.

Proof. Let B = {v1, . . . , vd} be the orthonormal basis. For any j ∈ {1, 2, . . . , d},

d∑
i=1

([T ∗]B)ijvi = T ∗(vj).

By the definition of the matrix representation,

T ∗(vj) =

d∑
i=1

⟨T ∗(vj), vi⟩vi.

Using the definition of the adjoint,

d∑
i=1

⟨vi, T ∗(vj)⟩vi =
d∑

i=1

⟨T (vi), vj⟩vi.
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Since ⟨T (vi), vj⟩ = ([T ]B)ji, we obtain

d∑
i=1

([T ]B)jivi =

d∑
i=1

([T ]TB)ijvi.

Thus, [T ∗]B = [T ]TB if F = R and [T ∗]B = [T ]HB if F = C.

Theorem. Assume F = C. Then T is normal if and only if there exists an orthonormal basis (ONB) of
eigenvectors of T .

(This relies on F = C because polynomials split.)

Definition. We say that T is self-adjoint if T = T ∗.

Theorem. If F = R, then T is self-adjoint if and only if there exists an ONB of eigenvectors.

Remark. Self-adjoint ⇒ Normal.

Theorem. Assume T is normal. Then we have:

(a) ∥T (v)∥ = ∥T ∗(v)∥ for all v ∈ V .

(b) T − cI is normal for all c ∈ F.

(c) If v ∈ V is an eigenvector for T with eigenvalue λ, then v is also an eigenvector for T ∗ with eigenvalue
λ.

(d) If v1, v2 are eigenvectors for T with distinct eigenvalues, then ⟨v1, v2⟩ = 0.

Theorem. Let T be a normal operator on a finite-dimensional complex inner product space V , and let W
be a subspace of V . If W is T -invariant, then W is also T ∗-invariant.

Lemma (Normality and polynomial existence). T is normal if and only if there exists a polynomial p such
that T ∗ = p(T ).

The forward direction relies on the spectral theorem and polynomial interpolation, i.e., p(λi) = λ̄i

Theorem (6.14). Let S be a linear endomorphism of a finite-dimensional vector space W over an arbitrary
field k such that the characteristic polynomial of S splits over k. Then, there exists a basis β of W such that
the matrix [S]β is upper triangular.

Moreover, due to Schur’s Theorem, if T : V → V is a linear operator such that its characteristic
polynomial splits, then there exists an orthonormal basis β for V such that [T ]β is upper triangular.

Theorem (6.16). Assume F = C. Then T has an orthonormal basis of eigenvectors if and only if T is
normal.

Theorem (6.17). Assume F = R. Then T has an orthonormal basis of eigenvectors if and only if T is
self-adjoint.
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Definition. Assume T is a linear endomorphism on an inner product space V . Assume T preserves all
lengths, i.e., for all v ∈ V ,

⟨v, v⟩ = ⟨T (v), T (v)⟩.

If our ground field is R, we say T is orthogonal. If F = C, we say that T is unitary.

Proposition. Any orthogonal or unitary transformation is always invertible if V is finite-dimensional.

Proof. Suppose v ∈ ker(T ) for an orthogonal (or unitary) operator T . Then:

0 = ∥T (v)∥ = ∥v∥ =⇒ v = 0.

This implies T is injective. Since V is finite-dimensional, injectivity implies surjectivity, so T is invertible.

Theorem (Theorem 6.18). Assume T : V → V is a linear endomorphism of a finite-dimensional inner
product space (fdIPS). The following conditions are equivalent:

(a) T ∗T = I.

(b) TT ∗ = I.

(c) ⟨T (v), T (w)⟩ = ⟨v, w⟩ for any v, w ∈ V .

(d) If β = {u1, . . . , ud} is an orthonormal basis (ONB) of V , then T (β) = {T (u1), . . . , T (ud)} is an ONB
of V .

(e) There exists an ONB β for V such that T (β) is an ONB for V .

(f) T is orthogonal if F = R or unitary if F = C.

Lemma. Let U : V → V be a skew-self-adjoint linear operator on a finite-dimensional inner product space
(fdIPS) V such that:

⟨v, U(v)⟩ = 0 for all v ∈ V.

Then U = 0.

Proof. Assume v ∈ V . We want to show that U(v) = 0.
Consider:

0 = ⟨v + U(v), U(v + U(v))⟩.

Expanding the inner product:

⟨v, U(v)⟩+ ⟨v, U2(v)⟩+ ⟨U(v), U(v)⟩+ ⟨U(v), U2(v)⟩.

Using linearity and self-adjoint properties:

⟨v, U2(v)⟩+ ⟨U(v), U(v)⟩ = 2⟨U(v), U(v)⟩.

Since the left-hand side is zero, we conclude:

U(v) = 0 for all v ∈ V.

Thus, U = 0 as a linear operator.
As a consequence, if U = I − T ∗T , we obtain:

I = T ∗T.
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Corollary. Let T : V → V be a linear endomorphism of a finite-dimensional inner product space (fdIPS)
over R. Then T is self-adjoint and orthogonal if and only if there exists an orthonormal basis (ONB) of
eigenvectors

{v1, . . . , vd}

of V such that:
T (vi) = ±1 for all i ∈ {1, . . . , d}.

Definition (Projection onto a Subspace). Let V be a vector space, and let W1,W2 be subspaces of V such
that:

V =W1 ⊕W2.

The projection of V onto W1, along W2, is the linear map projW1
: V →W1 given by:

projW1
(v) = w1,

where v = w1 + w2 with w1 ∈W1 and w2 ∈W2.
Note: The kernel and image of this projection satisfy:

ker(projW1
) =W2, Im(projW1

) =W1.

Terminology: We will sometimes simply say that a linear map T : V → V is a projection if it is a
projection onto its image along ker(T ).

Proposition. If V is a finite-dimensional inner product space (fdIPS) and W ⊆ V is a subspace, then:

V =W ⊕W⊥.

Proof. Assume {u1, . . . , uk} is an orthonormal basis (ONB) for W . Extend this to an ONB for V by adding
vectors {uk+1, . . . , un}.

For any v ∈ V , there exist scalars α1, . . . , αn ∈ F such that:

v = α1u1 + · · ·+ αkuk + (αk+1uk+1 + · · ·+ αnun).

The first sum belongs to W , and the second sum belongs to W⊥.
We claim:

α1u1 + · · ·+ αkuk ∈W, αk+1uk+1 + · · ·+ αnun ∈W⊥.

Moreover, this decomposition is unique, ensuring that:

V =W ⊕W⊥.

Definition (Orthogonal Projection). If V is a finite-dimensional inner product space (fdIPS) and W ⊆ V
is a subspace, the orthogonal projection onto W is defined as the projection onto W along W⊥.

Theorem (Spectral Theorem, Theorem 6.25). Assume T : V → V is a linear endomorphism of a finite-
dimensional inner product space (fdIPS) V that is self-adjoint. If F = R or if T is normal when F = C,
then:

Let W1, . . . ,Wr denote the eigenspaces corresponding to the distinct eigenvalues λ1, . . . , λr ∈ F.
Furthermore, for each i ∈ {1, . . . , r}, let Ti : V → V denote the orthogonal projection onto Wi. Then the

following hold:
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(i) V =W1 ⊕W2 ⊕ · · · ⊕Wr.

(ii) For each fixed i ∈ {1, . . . , r},

Wi =

⊕
j ̸=i

Wj

⊥

.

(iii) For all i, j ∈ {1, . . . , r},
TiTj = δijTj .

(iv) The operator T decomposes as:
T = λ1T1 + · · ·+ λrTr.

(v) The identity operator decomposes as:

I = T1 + · · ·+ Tr.

Definition (Spectrum). The set of eigenvalues of an operator T , as given in the spectral theorem, is called
the spectrum of T .

Corollary. A linear endomorphism T : V → V of a finite-dimensional inner product space (fdIPS) V is
unitary if and only if T is normal and all eigenvalues of T have length 1.

Remark. If z ∈ C and z = a+ bi, then the inverse of z is given by:

z−1 =
a− bi

a2 + b2
.

In particular, if |z| = 1, then:
z−1 = z.

Corollary. Assume V is a finite-dimensional inner product space (fdIPS), and T : V → V is a linear
endomorphism of V . Then, T is self-adjoint if and only if T is normal and all eigenvalues of T are real.

5 Geometry of Orthogonal Operators

Theorem (Theorem 6.23: Orthogonal Real Transformations in two dimensions). Assume T : R2 → R2 is
an orthogonal linear transformation. What are all possible such linear transformations?

1. The determinant of T satisfies:
det(T ) = ±1.

2. If det(T ) = 1, then T is a rotation, and can be expressed as:

T =

[
cos θ − sin θ
sin θ cos θ

]
for some angle θ.
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Definition (Reflection). The reflection about the line span

{[
0
1

]}
is the function:

Rspan{(0,1)} : R2 → R2

given by the transformation matrix:

Rspan{(0,1)} =

[
1 0
0 −1

]
.

Definition (Reflection Across a Line). Reflection across the line

span

{[
cos θ
sin θ

]}
for some θ ∈ R is the function R : R2 → R2 given by left multiplication by:

R =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]
.

Expanding the computation:[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

]
=

[
cos θ sin θ
sin θ − cos θ

]
.

Multiplying with the final matrix:[
cos θ sin θ
sin θ − cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ − sin2 θ 2 sin θ cos θ
2 sin θ cos θ sin2 θ − cos2 θ

]
.

Using trigonometric identities, we simplify:[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Thus, the reflection matrix is:

R =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Theorem (Theorem 6.23). Let T : R2 → R2 be an orthogonal linear endomorphism of R2 with its standard
inner product. Then, exactly one of the following holds:

1. T is a rotation by some angle θ ∈ [0, 2π], and det(T ) = 1.

2. T is a reflection about some line passing through the origin, and det(T ) = −1.

Definition (Rotations and Reflections in a Subspace). Let W be a two-dimensional subspace of an inner
product space V . We say that T :W →W is a rotation if there exists some orthonormal basis β = {u1, u2}
such that the matrix representation of T in this basis is:

[T ]β =

[
cos θ − sin θ
sin θ cos θ

]
for some θ ∈ [0, 2π].
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If T :W →W is a linear endomorphism and there exists an orthonormal basis of W such that:

[T ]β =

[
1 0
0 −1

]
,

then we say that T is a reflection.
If W is a one-dimensional subspace and T :W →W is the function satisfying T (w) = −w for all w ∈W ,

we say that T is a reflection. On the other hand, if T (w) = w for all w ∈W , we say that T is a rotation.

Corollary (Corollary 6.46). The composite of a reflection and a rotation is a reflection.

Lemma. If T : V → V is an orthogonal endomorphism on a finite-dimensional inner product space (fdIPS)
V , then there exists some subspace W such that:

1 ≤ dim(W ) ≤ 2

and W is T -invariant if dim(V ) ≥ 1.

Theorem. Assume T : V → V is an orthogonal operator on a finite-dimensional nonzero real inner product
space (RIPS). Then, there exist mutually orthogonal subspaces W1,W2, . . . ,Wm such that all the following
hold:

(i) dim(Wi) ∈ {1, 2} for all i ∈ {1, . . . ,m}.

(ii) Wi is T -invariant for all i ∈ {1, . . . ,m}.

(iii) (Knowing T |Wi
:Wi →Wi) we have the decomposition:

V =

m⊕
i=1

Wi.

Theorem. Moreover:

(A) The number of subspaces Wi for which T |Wi
is a reflection (as opposed to a rotation) is even if

det(T ) = 1 and odd if det(T ) = −1.

(B) In fact, there exists a decomposition W1, . . . ,Wm ⊆ V satisfying (i)–(iii) such that, for at most one
i ∈ {1, . . . ,m}, T |Wi

is a reflection.

Example. Using Theorem 6.47, set up a look at the case where dim(V ) = 3. One of the following holds:
Case 1: If n = 3, then dim(Wi) = 1 for i ∈ {1, 2, 3}. So the matrix of T is±1 0 0

0 ±1 0
0 0 ±1


with respect to some orthonormal basis.

Case 2: If n = 2, then there exists an orthonormal basis such that the restriction of T has the matrix(
R 0
0 ±1

)
where R is either a reflection or a rotation.
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6 Bilinear Forms

Definition. A bilinear form on a k-vector space V is a function

H : V × V → k

such that for any v1, v2, w ∈ V and scalars α, β ∈ k, the following hold:

(a) H(αv1 + βv2, w) = αH(v1, w) + βH(v2, w)

(b) H(w,αv1 + βv2) = αH(w, v1) + βH(w, v2)

Example. If A ∈ kd×d, we can define a bilinear form

H : kd × kd → k

by the formula
H(v, w) = v⊤Aw.

(Proof left as an exercise.)

Definition. Given two bilinear forms on a vector space V , say H1, H2, their sum is the function

(H1 +H2) : V × V → k

such that
(H1 +H2)(v, w) = H1(v, w) +H2(v, w), ∀v, w ∈ V.

If H is any bilinear form and α ∈ k, the scalar product αH : V × V → k is the function

(αH)(v, w) = α(H(v, w)).

Theorem (6.31 / Exercise). The sum of any two bilinear forms is a bilinear form, and the scalar product
of any scalar and any bilinear form is a bilinear form. Moreover, if B(V ) is the set of bilinear forms on a
vector space, then B(V ) has a vector space structure over k.

Definition. Assume V is a finite-dimensional vector space with basis

B = {v1, . . . , vd}.

Then, the matrix representation with respect to B of a bilinear form H : V × V → k is the matrix whose
(i, j) entry is given by

Hij = H(vi, vj), ∀i, j ∈ {1, . . . , d}.

Theorem. For every basis B of a finite-dimensional vector space V and every bilinear form H : V ×V → k,
we use the notation

TB(H) ∈ kd×d

to denote the matrix representation of H.

17



Theorem (Theorem 6.32). If V is a finite-dimensional vector space and

B = {v1, . . . , vd}

is a basis for V , then
TB : B(V ) → kd×d

is an isomorphism of vector spaces.

Corollary (2-3). Let V be a finite-dimensional vector space, and let H be a bilinear form on V . If B =
{v1, . . . , vd} is a basis for V , then

H(v, w) = [v]TBΨB(H)[w]B,

where ΨB(H) is the matrix representation of H in the basis B.
In particular, if V = kd and B is the standard basis, then any bilinear form H : kd × kd → k has the

property that
H(x, y) = xTTab(H)y.

Theorem (6.33). Let V be a finite-dimensional vector space, and let B,B′ be two bases for V . If H is a
bilinear form on V , then its matrix representation changes as follows:

ΨB′(H) = ITB′→BΨB(H)IB′→B.

Proof. Let B = {v1, . . . , vd} and let B′ = {w1, . . . , wd}. Then, for any wi, wj ∈ B′, we express the bilinear
form as:

H(wi, wj) = [wi]
T
B′ΨB′(H)[wj ]B′ .

Since the basis transformation satisfies [wi]B′ = IB′→B[wi]B, we substitute:

H(wi, wj) = (IB′→B[wi]B)
TΨB′(H)(IB′→B[wj ]B).

Rewriting,
H(wi, wj) = [wi]

T
BI

T
B′→BΨB′(H)IB′→B[wj ]B.

Since this holds for all wi, wj ∈ V , we conclude:

ΨB′(H) = ITB′→BΨB(H)IB′→B.

Definition. Let P,Q ∈ kd×d for d ≥ 2, or more generally for d ≥ 0 in an infinite-dimensional setting. We
say P and Q are congruent if there exists an invertible matrix M such that

P =MTQM.

Definition. A bilinear form H : V × V → k is symmetric if

H(v, w) = H(w, v) for all v, w ∈ V.
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Theorem (6.34). Let H be a bilinear form on a finite-dimensional vector space V , and let β be an ordered
basis for V . Then H is symmetric if and only if ψβ(H) is symmetric.

Lemma. Let H be a nonzero symmetric bilinear form on a vector space V over a field F not of characteristic
two. Then there exists a vector x ∈ V such that H(x, x) ̸= 0.

Theorem (Theorem 6.35). Let V be a finite-dimensional vector space over a field F not of characteristic
two. Then every symmetric bilinear form on V is diagonalizable.

Proof. We use mathematical induction on n = dim(V ). If n = 1, then every element of B(V ) is diagonaliz-
able.

Now suppose that the theorem is valid for vector spaces of dimension less than n for some fixed integer
n > 1, and suppose that dim(V ) = n. If H is the zero bilinear form on V , then trivially H is diagonalizable;
so suppose that H is a nonzero symmetric bilinear form on V .

By the lemma, there exists a nonzero vector x ∈ V such thatH(x, x) ̸= 0. Recall the function Lx : V → F
defined by

Lx(y) = H(x, y) for all y ∈ V.

By a standard property of bilinear forms, Lx is linear. Furthermore, since Lx(x) = H(x, x) ̸= 0, we have
that Lx is nonzero. Consequently, rank(Lx) = 1, and hence dim(N(Lx)) = n− 1.

The restriction of H to N(Lx) is obviously a symmetric bilinear form on a vector space of dimension
n − 1. Thus, by the induction hypothesis, there exists an ordered basis {v1, v2, . . . , vn−1} for N(Lx) such
that

H(vi, vj) = 0 for i ̸= j, (1 ≤ i, j ≤ n− 1).

Set vn = x. Then vn /∈ N(Lx), and so β = {v1, v2, . . . , vn} is an ordered basis for V . In addition,

H(vi, vn) = H(vn, vi) = 0 for i = 1, 2, . . . , n− 1.

We conclude that ψβ(H) is a diagonal matrix, and therefore H is diagonalizable.

Corollary. Let F be a field that is not of characteristic two. If A ∈Mn×n(F ) is a symmetric matrix, then
A is congruent to a diagonal matrix.

Proposition. Let k = Z/2Z. The function

H : k2 × k2 → k

is given by
H ((x1, x2), (y1, y2)) = x1y2 + x2y1.

I claim H is symmetric but not diagonalizable.
(H is symmetric)

Definition. The rank of a bilinear form
H : V × V → k

on a finite-dimensional vector space V is the rank of ψβ(H) for any basis β of V .
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