Math 131A Notes

Brendan Connelly

September to December 2024

Definition (Algebraic Number). A complex number $\alpha \in \mathbb{C}$ is called an *algebraic number* if there exists a non-zero polynomial with integer coefficients

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_i \in \mathbb{Z}, \quad a_n \neq 0,$$

such that $p(\alpha) = 0$. In other words, α is a root of a polynomial with integer coefficients.

The set of all algebraic numbers is denoted by $\overline{\mathbb{Q}}$ or A.

Theorem (Rational Zeros Theorem). Suppose c_0, c_1, \ldots, c_n are integers and r is a rational number satisfying the polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0,$$

where $n \ge 1$, $c_n \ne 0$, and $c_0 \ne 0$. Let $r = \frac{c}{d}$ where c, d are integers having no common factors and $d \ne 0$. Then c divides c_0 and d divides c_n .

In other words, the only rational candidates for solutions of the polynomial equation have the form $\frac{c}{d}$, where c divides c_0 and d divides c_n .

Definition (Radicals are not in \mathbb{Q}). Example 3: $\sqrt{17}$ is not a rational number.

Proof: The only possible rational solutions of the equation

$$x^2 - 17 = 0$$

are $\pm 1, \pm 17$. None of these numbers are solutions, and thus $\sqrt{17}$ is not a rational number.

Definition (Order on \mathbb{Q}). The set \mathbb{Q} also has an order structure \leq satisfying the following properties:

- O1. Given a and b, either $a \leq b$ or $b \leq a$.
- O2. If $a \leq b$ and $b \leq a$, then a = b.
- O3. If $a \le b$ and $b \le c$, then $a \le c$.
- O4. If $a \le b$, then $a + c \le b + c$.
- O5. If $a \le b$ and $0 \le c$, then $ac \le bc$.

Definition (Consequences of the Field Properties). The following are consequences of the field properties for $a, b, c \in \mathbb{R}$:

- (i) a+c=b+c implies a=b.
- (ii) $a \cdot 0 = 0$ for all a.

- (iii) (-a)b = -ab for all a, b.
- (iv) (-a)(-b) = ab for all a, b.
- (v) ac = bc and $c \neq 0$ imply a = b.
- (vi) ab = 0 implies either a = 0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the properties of an ordered field for $a, b, c \in \mathbb{R}$:

- (i) If $a \leq b$, then $-b \leq -a$.
- (ii) If $a \leq b$ and $c \leq 0$, then $bc \leq ac$.
- (iii) If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- (iv) $0 \le a^2$ for all a.
- (v) 0 < 1.
- (vi) If 0 < a, then $0 < a^{-1}$.
- (vii) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Note: a < b means $a \le b$ and $a \ne b$.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for $a, b \in \mathbb{R}$:

- (i) $|a| \ge 0$ for all $a \in \mathbb{R}$.
- (ii) $|ab| = |a| \cdot |b|$ for all $a, b \in \mathbb{R}$.
- (iii) $|a+b| \leq |a| + |b|$ for all $a, b \in \mathbb{R}$ (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value function for $a, b \in \mathbb{R}$:

$$||a| - |b|| \le |a - b|$$

1 Completeness

Definition (Bounded Definitions). Let $\emptyset \neq A \subseteq \mathbb{R}$.

- 1. We say that A is bounded above if there exists $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in A$. In this case, M is called an upper bound for A. If moreover $M \in A$, then M is called the maximum of A.
- 2. We say that A is bounded below if there exists $m \in \mathbb{R}$ such that $m \leq a$ for all $a \in A$. In this case, m is called a lower bound for A. If moreover $m \in A$, then m is called the minimum of A.
- 3. We say that A is bounded if it is both bounded below and bounded above.

Definition (Supremum and Infimum). Let $\emptyset eqA \subseteq \mathbb{R}$.

- 1. Let A be bounded above. We say L is a least upper bound for A if:
 - (a) L is an upper bound for A.
 - (b) If M is an upper bound for A, then $L \leq M$.

This L is also called the *supremum* of A and we write $L = \sup A$.

- 2. Let A be bounded below. We say ℓ is a greatest lower bound for A if:
 - (a) ℓ is a lower bound for A.
 - (b) If m is a lower bound for A, then $m \leq \ell$.

This ℓ is also called the *infimum* of A and we write $\ell = \inf A$.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let $\emptyset \neq S \subseteq \mathbb{R}$.

- 1. We say S has the *least upper bound property* if for every nonempty subset A of S which is also bounded above, A has a least upper bound in S.
- 2. We say S has the *greatest lower bound property* if for every nonempty subset A of S which is also bounded below, A has a greatest lower bound in S.

Theorem (Axiom of \mathbb{R}). The set of real numbers \mathbb{R} has the least upper bound property. In fact, it is the unique ordered field with the least upper bound property. As a corollary, the set of real numbers \mathbb{R} has the greatest lower bound property.

Property (Archimedean Property of \mathbb{R}). For any $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that x < n. This n depends on x.

Proof. Proof by contradiction. Suppose not, then there exists $x \in \mathbb{R}$ such that $x \ge n$ for all $n \in \mathbb{N}$. Hence, $\mathbb{N} \subseteq \mathbb{R}$ is bounded above. By the least upper bound property of \mathbb{R} , we have $\sup \mathbb{N} = L$ exists in \mathbb{R} . Then L-1 is not an upper bound for \mathbb{N} , so there is an $m \in \mathbb{N}$ such that m > L-1. But then $m+1 \in \mathbb{N}$ and m+1 > L, contradicting $L = \sup \mathbb{N}$.

Corollary (AP Corollary). If a > 0, b > 0, then there exists $n \in \mathbb{N}$ such that na > b.

Corollary (AP Corollary). For $a \in \mathbb{R}$, there exists $n \in \mathbb{Z}$ such that $n \leq a < n + 1$.

Proof. If $a \in \mathbb{Z}$, take n = a.

For a > 0 and $a \notin \mathbb{N}$, define $S = \{n \in \mathbb{Z} : n < a\} \ni 0$. We claim that there is an $m \in \mathbb{Z}$ such that $m \in S$ but $m + 1 \notin S$. If not, $m \in S$ implies $m + 1 \in S$, and we have $0 \in S$, thus by induction $\mathbb{N} \cup \{0\} \subseteq S$. This implies \mathbb{N} is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have -a > 0. Then there is $\ell \in \mathbb{N}$ such that $\ell < -a < \ell + 1$, and so $-\ell - 1 < a \le -\ell$. Take $n = -\ell - 1$.

Corollary (AP flipped). For $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

Definition (Density in \mathbb{R}). Let set $A \subseteq \mathbb{R}$ be called *dense in* \mathbb{R} if for any $x, y \in \mathbb{R}$ with x < y, there exists an $a \in A$ such that x < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers \mathbb{Q} is dense in \mathbb{R} .

Proof. Let $x, y \in \mathbb{R}$ with x < y. Then there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < y - x$. There exists $m \in \mathbb{Z}$ such that $m - 1 \le nx < m$. Then

$$\frac{m-1}{n} \le x < \frac{m}{n}$$

and so

$$x < \frac{m}{n} \le x + \frac{1}{n} < y,$$

noting that $\frac{m}{n} \in \mathbb{Q}$.

Corollary (Irrationals Dense in Reals). The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Proof. Let $x, y \in \mathbb{R}$ with x < y. Then $x\sqrt{2} < y\sqrt{2}$. By the density of \mathbb{Q} in \mathbb{R} , there exists $r \in \mathbb{Q}$ such that $x\sqrt{2} < r < y\sqrt{2}$, which implies $x < \sqrt{2}r < y$. Note that $\sqrt{2}r \in \mathbb{R} \setminus \mathbb{Q}$.

Definition (Extension to Infinity). The symbols $+\infty$, $-\infty$. We adjoin these symbols with $\mathbb R$ so that $-\infty < a < +\infty$ for all $a \in \mathbb R$. If $\emptyset eq A \subseteq \mathbb R$ is not bounded above, we set $\sup A = +\infty$. Similarly, if $\emptyset eq A \subseteq \mathbb R$ is not bounded below, we set $\inf A = -\infty$.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function $f : \mathbb{N}o\mathbb{R}$. We can represent this function f as

$$f(1), f(2), \dots$$

or $(f(n))_{n\in\mathbb{N}}$, or more commonly $(f_n)_{n\in\mathbb{N}}$, $(f_n)_{n\geq 1}$, or simply (f_n) . We can also use curly braces, such as $\{f_n\}$, to denote the sequence.

Examples:

- 1. $(a_n)_{n\in\mathbb{N}}$ with $a_n = \frac{1}{n}$
- 2. $(a_n)_{n\in\mathbb{N}}$ with $a_n=(-1)^n$
- 3. $(a_n)_{n\in\mathbb{N}}$ with $a_n=n^2$
- 4. $(a_n)_{n\in\mathbb{N}}$ with $a_n = \cos\left(\frac{n\pi}{2}\right)$

$\mathbf{2}$ Limits and Convergence

Definition (Convergence of a Sequence). A sequence (a_n) of real numbers converges if there exists $a \in \mathbb{R}$ such that for any given $\epsilon > 0$, there exists an $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \geq n_{\epsilon}$.

In this case, a is called the *limit* of the sequence, and we write

$$a = \lim_{n \to \infty} a_n$$

or $a_n \to a$ as $n \to \infty$. We say (a_n) converges to a. If no such limit a exists, i.e., if the sequence does not converge, then we say the sequence diverges.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (a_n) converges and $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} a_n = b$. We want to show a = b.

Let $\epsilon > 0$. There exist $n_1, n_2 \in \mathbb{N}$ such that $|a_n - a| < \frac{\epsilon}{2}$ for all $n \ge n_1$ and $|a_n - b| < \frac{\epsilon}{2}$ for all $n \ge n_2$. Then for $n \ge \max(n_1, n_2)$, we have $|a_n - a| < \frac{\epsilon}{2}$ and $|a_n - \bar{b}| < \frac{\epsilon}{2}$.

Therefore, with such n, we have

$$|a-b| \le |a-a_n| + |a_n-b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we conclude a = b.

Example (Limit Examples). Example 1 Show that (a_n) with $a_n = \frac{1}{n}$ converges to zero.

Proof. Let $\epsilon > 0$, we need to find $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - 0| = a_n < \epsilon$ for all $n \ge n_{\epsilon}$. By the Archimedean property of \mathbb{R} , there exists $n_{\epsilon} \in \mathbb{N}$ such that $n_{\epsilon} > \frac{1}{\epsilon}$. Then for $n \geq n_{\epsilon}$, we have

$$\frac{1}{n} \le \frac{1}{n_{\epsilon}} < \epsilon.$$

Example 2 Show that (a_n) with $a_n = (-1)^n$ diverges.

Proof. By contradiction. Suppose $a_n \to a \in \mathbb{R}$. Then $|a_n - a| < \frac{1}{2}$ for all $n \ge m$ for some $m \in \mathbb{N}$. For even $n \ge m$, we have $|1-a| < \frac{1}{2}$, and for odd $n \ge m$, we have $|-1-a| < \frac{1}{2}$. Then

$$2 = 1 + a + 1 - a \le |1 + a| + |1 - a| < 1$$
,

which is a contradiction.

Example 3 Show that $\lim_{n\to\infty} \frac{3n+1}{5n-2} = \frac{3}{5}$. **Proof.** Let $\epsilon > 0$. It is enough to show there exists $n_{\epsilon} \in \mathbb{N}$ such that for all $n \geq n_{\epsilon}$, we have

$$\left| \frac{3n+1}{5n-2} - \frac{3}{5} \right| < \epsilon,$$

i.e.,

$$\frac{11}{5(5n-2)}<\epsilon.$$

Note that

$$\frac{11}{5\epsilon} < 5n - 2 \iff n > \frac{2}{5} + \frac{11}{25\epsilon}.$$

So choose $n_{\epsilon} \in \mathbb{N}$ satisfying

$$n_{\epsilon} > \frac{2}{5} + \frac{11}{25\epsilon}.$$

Then for all $n \geq n_{\epsilon}$, we have

$$n > \frac{2}{5} + \frac{11}{25\epsilon},$$

which implies

$$\epsilon > \frac{11}{5(5n-2)} = \frac{11}{5(5n-2)}.$$

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (a_n) be a convergent sequence converging to $a \in \mathbb{R}$. Then there exists $N \in \mathbb{N}$ such that $|a_n - a| < 1$ for all $n \geq N$. Thus $|a_n| \leq |a_n - a| + |a| < 1 + |a|$ for all $n \geq N$.

Let $M = \max\{|a_1|, \dots, |a_{N-1}|, 1+|a|\}$, then for all $n \in \mathbb{N}$, $|a_n| \leq M$.

Theorem (Limit Properties). Let $(a_n), (b_n)$ be two convergent sequences with limits $a, b \in \mathbb{R}$. Then:

- 1. For $k \in \mathbb{R}$, we have $\lim_{n\to\infty} ka_n = ka$.
- $2. \lim_{n\to\infty} (a_n + b_n) = a + b.$
- 3. $\lim_{n\to\infty} a_n b_n = ab$.
- 4. If $a_n \neq 0$ for all $n \in \mathbb{N}$ and $a \neq 0$, then $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$.
- 5. If $a_n \neq 0$ for all $n \in \mathbb{N}$ and $a \neq 0$, then $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a}$.

Proof.

- 1. Let $\epsilon > 0$. Then there exists $n_{\epsilon} \in \mathbb{N}$ such that $|a_n a| < \frac{\epsilon}{k}$, which implies $|ka_n ka| < \epsilon$.
- 2. Let $\epsilon > 0$. Then there exist $n_1, n_2 \in \mathbb{N}$ such that $|a_n a| < \frac{\epsilon}{2}$ and $|b_n b| < \frac{\epsilon}{2}$. Then for $n \ge n_{\epsilon} = \max(n_1, n_2)$, we have $|(a_n + b_n) (a + b)| < \epsilon$.
- 3. Let $\epsilon > 0$. We want to find $n_{\epsilon} \in \mathbb{N}$ such that $|a_n b_n ab| < \epsilon$. Let M be such that $|a_n| \leq M$ for all n. Let n_1, n_2 be such that $|a_n a| < \frac{\epsilon}{2(|b|+1)}$ for all $n \geq n_1$ and $|b_n b| < \frac{\epsilon}{2M}$. Then

$$|a_n b_n - ab| \le |a_n||b_n - b| + |b||a_n - a| < M \cdot \frac{\epsilon}{2M} + |b| \cdot \frac{\epsilon}{2(|b| + 1)} < \epsilon.$$

4. Claim: $\inf\{|a_n|: n \in \mathbb{N}\} = m > 0$. Indeed, there is n_1 such that for all $n \ge n_1$, one has $|a_n - a| < \frac{|a|}{2}$, which implies $|a_n| \ge |a| - |a_n - a| \ge \frac{|a|}{2}$. So $m = \inf_n |a_n| \ge \inf\{|a_1|, \dots, |a_{n_1}|, \frac{|a|}{2}\} > 0$.

Now choose $n_{\epsilon} \in \mathbb{N}$ such that $|a_n - a| < \epsilon |a| m$. Then

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} < \epsilon.$$

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (s_n) , we write $\lim s_n = +\infty$ provided that for each M > 0, there is a number N such that n > N implies $s_n > M$.

In this case, we say the sequence diverges to $+\infty$.

Similarly, we write $\lim s_n = -\infty$ provided that for each M < 0, there is a number N such that n > N implies $s_n < M$.

Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which will depend on M) such that n > N implies $\sqrt{n} + 7 > M$.

To see how big N must be, we "solve" for n in the inequality $\sqrt{n}+7>M$. This inequality holds provided $\sqrt{n}>M-7$ or $n>(M-7)^2$. Thus, we will take $N=(M-7)^2$.

Formal Proof.

Let M > 0 and let $N = (M-7)^2$. Then n > N implies $n > (M-7)^2$, hence $\sqrt{n} > M-7$, hence $\sqrt{n} + 7 > M$. This shows $\lim(\sqrt{n} + 7) = +\infty$.

Theorem. Let (s_n) and (t_n) be sequences such that

$$\lim_{n \to \infty} s_n = +\infty \quad \text{and} \quad \lim_{n \to \infty} t_n > 0$$

(where $\lim_{n\to\infty} t_n$ can be finite or $+\infty$). Then

$$\lim_{n\to\infty} s_n t_n = +\infty.$$

Proof. Let M > 0 be given. Choose a real number m such that

$$0 < m < \lim_{n \to \infty} t_n.$$

Such an m exists because $\lim_{n\to\infty} t_n > 0$.

There are two cases to consider:

1. Case 1 $\lim_{n\to\infty} t_n$ is finite.

Since $\lim_{n\to\infty} t_n > m$, there exists an integer N_1 such that for all $n > N_1$,

$$t_n > m$$
.

2. Case 2: $\lim_{n\to\infty} t_n = +\infty$.

In this scenario, $t_n > m$ holds for all sufficiently large n, so we can similarly find an integer N_1 such that for all $n > N_1$,

$$t_n > m$$
.

Since $\lim_{n\to\infty} s_n = +\infty$, there exists an integer N_2 such that for all $n > N_2$,

$$s_n > \frac{M}{m}$$
.

Let $N = \max\{N_1, N_2\}$. Then, for all n > N,

$$s_n t_n > \frac{M}{m} \cdot m = M.$$

Since M was arbitrary, it follows that $\lim_{n\to\infty} s_n t_n = +\infty$.

3 Sequences Post Midterm

Definition (Limit Superior). Let (a_n) be a sequence of real numbers. The **limit superior** (or \limsup) of (a_n) is defined by:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k.$$

This is the greatest limit point of the sequence, or equivalently, the largest value to which any subsequence of (a_n) converges.

Definition (Limit Inferior). Let (a_n) be a sequence of real numbers. The **limit inferior** (or \liminf) of (a_n) is defined by:

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k.$$

This is the smallest limit point of the sequence, or equivalently, the lowest value to which any subsequence of (a_n) converges.

Definition. A sequence (a_n) of real numbers is called:

- 1. **increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$,
- 2. decreasing if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$,
- 3. strictly increasing if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$,
- 4. strictly decreasing if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.

A sequence that is either increasing or decreasing is called a **monotone sequence**.

Theorem. All bounded monotone sequences converge.

Proof. Let (s_n) be a bounded increasing sequence. Let S denote the set $\{s_n : n \in \mathbb{N}\}$, and let $u = \sup S$. Since S is bounded, u represents a real number. We show $\lim s_n = u$.

Let $\epsilon > 0$. Since $u - \epsilon$ is not an upper bound for S, there exists s_N such that $s_N > u - \epsilon$. Since (s_n) is increasing, we have $s_N \leq s_n$ for all $n \geq N$. Of course, $s_n \leq u$ for all n, so n > N implies $u - \epsilon < s_n \leq u$, which implies $|s_n - u| < \epsilon$. This shows $\lim s_n = u$.

The proof for bounded decreasing sequences is left to Exercise 10.2.

Definition. Let (a_n) be a bounded sequence (convergent or not). Then the limiting behavior of (a_n) depends on the set of the form

$$\{a_n: n \ge N\} = \bigcup_N A_N.$$

Let us define

$$u_N = \inf\{a_n : n \ge N\}$$
 and $v_N = \sup\{a_n : n \ge N\}$.

Then

$$u_1 \le u_2 \le \cdots \le u_N \le \cdots$$
 and $v_1 \ge v_2 \ge \cdots \ge v_N \ge \cdots$,

i.e., (u_N) is increasing and (v_N) is decreasing.

Definition (Cauchy Sequences). A sequence (a_n) in \mathbb{R} is called **Cauchy** if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$
 for all $n, m \ge N$.

Proposition. Convergent sequences are Cauchy.

Proof. Let (a_n) be a Cauchy sequence in \mathbb{R} converging to $a \in \mathbb{R}$. Let $\epsilon > 0$. Then $\epsilon/2 > 0$ and hence there exists $N_{\epsilon/2} \in \mathbb{N}$ such that

$$|a_n - a| < \frac{\epsilon}{2}$$
 for all $n \ge N_{\epsilon/2}$.

Let $n, m \geq N_{\epsilon/2}$. Then

$$|a_n - a_m| \le |a_n - a| + |a - a_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence, (a_n) is a Cauchy sequence.

Lemma. Cauchy sequences are bounded.

Proof. Let (a_n) be a Cauchy sequence. Then there exists $N \in \mathbb{N}$ such that $|a_n - a_m| < 1$ for all $n, m \ge N$. Let

$$M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |a_N| + 1\}.$$

Then for all n = 1, ..., N - 1, we have $|a_n| \le M$. For all $n \ge N$, we have

$$|a_n| \le |a_N| + 1 \le M.$$

Hence, for all $n \in \mathbb{N}$, we have $|a_n| \leq M$.

Theorem. A sequence (a_n) in \mathbb{R} converges if and only if (a_n) in \mathbb{R} is Cauchy.

Proof. (\Rightarrow) This direction follows from the above proposition.

(\Leftarrow) Since (a_n) is Cauchy, it is bounded. Then it is enough to check that $\limsup a_n = \liminf a_n$. Let $\epsilon > 0$. Then there exists $n_2 \in \mathbb{N}$ such that for all $n, m \geq n_2$,

$$|a_n - a_m| < \epsilon$$
.

This implies:

$$\begin{aligned} a_n < a_m + \epsilon \quad \text{for all } n, m \geq n_2, \\ u_{n_2} \leq a_m + \epsilon \quad \text{for all } m \geq n_2, \\ u_{n_2} \leq u_{n_2} + \epsilon, \\ \lim\sup a_n \leq u_{n_2} \leq u_{n_2} + \epsilon \leq \liminf a_n + \epsilon, \end{aligned}$$

i.e.,

$$\limsup a_n \leq \liminf a_n$$
.

Since $\epsilon > 0$ is arbitrary, we have $\limsup a_n = \liminf a_n$.

Definition. Let (k_n) be a sequence of natural numbers such that $k_{n+1} > k_n$ for all $n \in \mathbb{N}$. Let (a_n) be a sequence of real numbers. Then the sequence $(a_{k_n})_{n \in \mathbb{N}}$ is called a **subsequence** of $(a_n)_{n \in \mathbb{N}}$.

Remark. It is easy to see that $k_n \geq n$ for all $n \in \mathbb{N}$ and hence $k_n \to \infty$ as $n \to \infty$.

Theorem. Every sequence has a monotone subsequence.

Proof. We say that the *n*th term is the **dominant** term if $a_n > a_m$ for m > n.

Case 1: There are infinitely many dominant terms. Let a_{k_1} be the first dominant term, a_{k_2} the next, and so on. Then clearly, (a_{k_n}) is a decreasing subsequence of (a_n) .

Case 2: There are only finitely many dominant terms. Let a_M be the last dominant term in the sequence a_1, a_2, \ldots Let $k_1 > M$. Since a_{k_1} is not dominant, there exists $k_2 > k_1$ such that $a_{k_2} \ge a_{k_1}$. Since a_{k_2} is not dominant, there exists $k_3 > k_2$ such that $a_{k_3} \ge a_{k_2}$.

We proceed inductively to construct a subsequence (a_{k_n}) of (a_n) : Assume we have found k_1, \ldots, k_m such that

$$a_{k_1} \le a_{k_2} \le \dots \le a_{k_m}.$$

Then, since a_{k_m} is not dominant, there exists $k_{m+1} > k_m$ such that

$$a_{k_{m+1}} \ge a_{k_m}$$
.

Thus, we have constructed an increasing subsequence.

Theorem (Bolzano-Weierstrass). Any bounded sequence has a convergent subsequence.

Proof. Let (a_n) be a bounded sequence. Then by the previous theorem, it has a monotone subsequence, say (a_{n_k}) . Since (a_{n_k}) is bounded and monotone, it is convergent.

Theorem. Let (a_n) be a sequence in \mathbb{R} . Then:

- (a) There exists a subsequence whose limit is $\limsup_{n\to\infty} a_n$.
- (b) There exists a subsequence whose limit is $\liminf_{n\to\infty} a_n$.

Definition. Let $\{a_n\}$ be a sequence in \mathbb{R} . A subsequential limit is any $a \in \mathbb{R} \cup \{-\infty, \infty\}$ that is the limit of any subsequence of $\{a_n\}$.

Remark. If $\lim_{n\to\infty} a_n = a$, then the set of all subsequential limits is $\{a\}$.

Theorem. Let $\{a_n\} \subseteq \mathbb{R}$ and let A be the set of all subsequential limits of $\{a_n\}$. Then:

- (a) $A \neq \emptyset$.
- (b) $\sup A = \lim \sup_{n \to \infty} a_n$ and $\inf A = \lim \inf_{n \to \infty} a_n$.
- (c) $\lim_{n\to\infty} a_n$ exists if and only if |A|=1.

Theorem. Let A denote the set of all subsequential limits of (a_n) . Suppose $\{b_n\}$ is a sequence in $A \cap \mathbb{R}$ with $b = \lim_{n \to \infty} b_n$. Then $b \in A$.

Theorem. If $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ and a > 0, and (b_n) is a sequence in \mathbb{R} , then

$$\limsup (a_n b_n) = a \limsup b_n.$$

Theorem. Let (a_n) be a sequence of real numbers. Then

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf a_n^{1/n} \le \limsup a_n^{1/n} \le \limsup \left| \frac{a_{n+1}}{a_n} \right|.$$

Definition (Alternative Definitions of Limit Superior). Let (a_n) be a sequence of real numbers. The **limit** superior (\limsup) can be equivalently defined as:

• Supremum of Subsequence Limits:

$$\limsup_{n\to\infty} a_n = \sup\left\{\ell\in\mathbb{R} \;\middle|\; \text{there exists a subsequence } (a_{n_k}) \text{ such that } \lim_{k\to\infty} a_{n_k} = \ell\right\}.$$

• Infimum of Supremums of Tails:

$$\limsup_{n \to \infty} a_n = \inf_{n \ge 1} \left(\sup_{k \ge n} a_k \right).$$

• Eventually Upper Bounds: For every $\epsilon > 0$, there exists an N such that for all $n \ge N$,

$$a_n \le \limsup_{k \to \infty} a_k + \epsilon,$$

and there are infinitely many n for which

$$a_n \ge \limsup_{k \to \infty} a_k - \epsilon.$$

• Using Negation and Limit Inferior:

$$\limsup_{n \to \infty} a_n = -\liminf_{n \to \infty} (-a_n).$$

Definition (Alternative Definitions of Limit Inferior). Let (a_n) be a sequence of real numbers. The **limit** inferior (\liminf) can be equivalently defined as:

• Infimum of Subsequence Limits:

$$\liminf_{n\to\infty} a_n = \inf \left\{ \ell \in \mathbb{R} \mid \text{there exists a subsequence } (a_{n_k}) \text{ such that } \lim_{k\to\infty} a_{n_k} = \ell \right\}.$$

• Supremum of Infimums of Tails:

$$\liminf_{n \to \infty} a_n = \sup_{n \ge 1} \left(\inf_{k \ge n} a_k \right).$$

• Eventually Lower Bounds: For every $\epsilon > 0$, there exists an N such that for all $n \geq N$,

$$a_n \ge \liminf_{k \to \infty} a_k - \epsilon,$$

and there are infinitely many n for which

$$a_n \leq \liminf_{k \to \infty} a_k + \epsilon$$
.

• Using Negation and Limit Superior:

$$\liminf_{n \to \infty} a_n = -\limsup_{n \to \infty} (-a_n).$$

Series 4

Definition. Let (a_n) be a sequence in \mathbb{R} . For $n \in \mathbb{N}$, define $s_n = a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k$. The series $\sum_{n=1}^{\infty} a_n$ is said to **converge** if the sequence of partial sums (s_n) converges. A series that does not converge is said to diverge.

Definition. A series $\sum_{n=1}^{\infty} a_n$ is said to **converge absolutely** if the series $\sum_{n=1}^{\infty} |a_n|$ converges. [Note that the series $\sum_{n=1}^{\infty} |a_n|$ either converges or diverges to ∞ .]

Theorem. The series $\sum_{n=1}^{\infty} a_n$ converges if and only if it satisfies the Cauchy criterion, i.e., for $\forall \epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N} \text{ such that}$

$$\left| \sum_{k=n}^{n+m} a_k \right| < \epsilon \quad \text{for all } n \ge N_{\epsilon} \text{ and } m \in \mathbb{N} \cup \{0\}.$$

Proof. $\sum_{n=1}^{\infty} a_n$ converges \iff (s_n) converges \iff (s_n) is Cauchy.

$$\iff \forall \epsilon > 0, \exists \tilde{N}_{\epsilon} \in \mathbb{N} \text{ such that } |s_{m} - s_{n}| < \epsilon \quad \text{for all } m, n \geq \tilde{N}_{\epsilon}.$$

$$\iff \forall \epsilon > 0, \exists \tilde{N}_{\epsilon} \in \mathbb{N} \text{ such that } \left| \sum_{k=n}^{n+m} a_{k} \right| < \epsilon \quad \text{for all } n \geq \tilde{N}_{\epsilon}, m \in \mathbb{N}.$$

$$\iff \forall \epsilon > 0, \exists \tilde{N}_{\epsilon} \in \mathbb{N} \text{ such that } \left| \sum_{k=n}^{\infty} a_{k} \right| < \epsilon \quad \text{for all } n \geq \tilde{N}_{\epsilon} \text{ and } m \in \mathbb{N} \cup \{0\}.$$

Corollary. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem (Comparison test). Let (a_n) be a series with $a_n \geq 0$ for all $n \in \mathbb{N}$.

- 1. If $\sum_{n=1}^{\infty} a_n$ converges and $|b_n| \leq a_n$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} b_n$ converges.
- 2. If $\sum_{n=1}^{\infty} a_n = \infty$ and $b_n \ge a_n$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} b_n = \infty$.

Proof. 1. This follows from the fact

$$\left| \sum_{k=n}^{n+m} b_k \right| \le \sum_{k=n}^{n+m} a_k$$

and the Cauchy criterion.

2. Since $a_n \leq b_n$ for all $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} b_k \ge \sum_{k=1}^{n} a_k.$$

Since $\sum_{k=1}^{n} a_k \to \infty$ as $n \to \infty$, we have $\sum_{k=1}^{n} b_k \to \infty$ as $n \to \infty$.

Theorem (The root test). Let $\sum_{n=1}^{\infty} a_n$ be a series and let

$$\alpha = \limsup_{n \to \infty} |a_n|^{1/n}.$$

Then the series $\sum_{n=1}^{\infty} a_n$:

- 1. converges absolutely if $\alpha < 1$,
- 2. diverges if $\alpha > 1$,

3. has no conclusion if $\alpha = 1$.

Proof. 1. Let $\epsilon > 0$ be such that $\alpha + \epsilon < 1$. Since

$$\alpha = \limsup_{n \to \infty} |a_n|^{1/n} = \inf_N \sup_{n > N} |a_n|^{1/n},$$

there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\sup\{|a_n|^{1/n}: n \ge N_{\epsilon}\} < \alpha + \epsilon.$$

This implies

$$|a_n| < (\alpha + \epsilon)^n$$
 for all $n \ge N_{\epsilon}$.

Since $\sum_{n=1}^{\infty} (\alpha + \epsilon)^n$ converges, we conclude that $\sum_{n=1}^{\infty} |a_n|$ converges. 2. There exists a subsequence (a_{k_n}) of (a_n) such that $\lim_{n\to\infty} |a_{k_n}|^{1/k_n} = \alpha > 1$. This implies there exists $N \in \mathbb{N}$ such that

$$|a_n|^{1/n} > 1$$
 for all $n \ge N$,

which leads to

$$|a_n| > 1$$
 for all $n \ge N$.

This implies $\lim_{n\to\infty} a_n \neq 0$ and the Cauchy criterion is not satisfied. Thus, $\sum_{n=1}^{\infty} a_n$ does not converge. \square

Theorem (The ratio test). Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n \neq 0$ for all $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} a_n$:

- 1. converges absolutely if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- 2. diverges if $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$,
- 3. has no conclusion if $\liminf_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|\leq 1\leq \limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$.

Proof. Recall that

$$\liminf_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Parts 1 and 2 follow from the root test. Part 3 uses the same counterexamples as in the root test.

Theorem (Abel's criterion). Let (a_n) be a decreasing sequence with $\lim_{n\to\infty} a_n = 0$. Let (b_n) be such that $\sum_{k=1}^{\infty} b_k$ is bounded. Then $\sum_{n=1}^{\infty} a_n b_n$ converges.

Proof. Let $t_n = \sum_{k=1}^n b_k$. As (t_n) is bounded, there exists M > 0 such that $|t_n| \leq M$ for all $n \in \mathbb{N}$. For $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $|a_n| < \frac{\epsilon}{2M}$ for all $n \geq N_{\epsilon}$. Now,

$$\sum_{k=n}^{n+m} a_k b_k = \sum_{k=n}^{n+m} a_k (t_k - t_{k-1}) = \sum_{k=n}^{n+m} (a_k - a_{k+1}) t_k + a_{n+m+1} t_{n+m} - a_n t_{n-1}.$$

This implies

$$\left|\sum_{k=n}^{n+m} a_k b_k\right| \le M(a_n - a_{n+m+1}) + Ma_{n+m+1} + Ma_n < \epsilon \quad \text{for all } n \ge N_\epsilon \text{ and } m \in \mathbb{N} \cup \{0\}.$$

Corollary (Leibniz Criterion). If (a_n) is decreasing and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

Theorem (The dyadic criterion). Let (a_n) be decreasing and $a_n \ge 0$. Then $\sum a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Proof. Let $s_n = \sum_{k=0}^n a_k$ and $t_n = \sum_{k=0}^n 2^k a_{2^k}$. Then:

$$2^n a_{2^{n+1}} \le \sum_{k=2^n}^{2^{n+1}-1} a_k \le 2^n a_{2^n}.$$

Using the fact that (a_n) is decreasing:

$$2^{n+1}a_{2^{n+1}} \le 2\sum_{k=n}^{\infty} 2^k a_{2^k}.$$

This implies:

$$\sum_{k=n}^{\infty} 2^{k+1} a_{2^k} \le 2 \sum_{k=n}^{\infty} 2^k a_k.$$

Hence:

$$t_{n+1} - a_1 \le s_{2^{n+1}}$$
 and $s_n \le t_n + a_1$.

Since (s_n) converges if and only if (t_n) converges, we conclude:

$$\sum a_n$$
 converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Theorem (The Raab-Duhamel Criterion). Let $\sum a_n$ be a series with $a_n > 0 \ \forall n \in \mathbb{N}$. Suppose that $\exists n_0 \in \mathbb{N}$ and q > 1 such that

$$n\left(\frac{a_n}{a_{n+1}}-1\right) \ge q \quad \forall n \ge n_0.$$

Then the series $\sum_{n} a_n$ converges.

Proof. Let $q = 1 + \varepsilon$ for some $\varepsilon > 0$. Then

$$n\left(\frac{a_n}{a_{n+1}} - 1\right) \ge q = 1 + \varepsilon$$

implies

$$na_n - na_{n+1} \ge a_{n+1} + \varepsilon a_{n+1}.$$

Rearranging, we have

$$na_n \ge (n+1)a_{n+1} + \varepsilon a_{n+1} \quad \forall n \ge n_0.$$

Thus,

$$n_0 a_{n_0} \ge (n+1)a_{n+1} + \varepsilon a_{n+1} + (n+2)a_{n+2} + \varepsilon a_{n+2} + \cdots$$

 $\ge (n+p)a_{n+p} + \varepsilon \sum_{k=n+1}^{n+p} a_k \quad \forall n \in \mathbb{N}.$

This implies

$$a_{n_0+1} + \dots + a_{n_0+m} \le \frac{n_0 a_{n_0}}{\varepsilon} \quad \forall n \in \mathbb{N}.$$

Therefore, the partial sum of $\sum_{n=n_0+1}^{\infty} a_n$ is bounded above by $\frac{n_0 a_{n_0}}{\varepsilon}$. Since $a_n > 0 \ \forall n \in \mathbb{N}$, we conclude that $\sum a_n$ converges.

Continuity

Definition. Let $f: I \to \mathbb{R}$ be a function, where $I \subset \mathbb{R}$. We say that f is continuous at $x_0 \in I$ if for every sequence $\{x_n\} \subset I$ with

$$\lim_{n\to\infty}x_n=x_0,$$

we have

$$\lim_{n \to \infty} f(x_n) = f(x_0).$$

If f is continuous at every point of a set $S \subset I$, then we say f is continuous on S. We say f is continuous if it is continuous on I.

Theorem. Let $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ be a function. Then f is continuous at $x_0 \in I$ if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in I$ with $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| < \varepsilon.$$

Proof. (\Rightarrow) By contradiction: Assume $\exists \varepsilon_0 > 0$ such that $\forall \delta_0 > 0$, $\exists x_\delta \in I$ with $|x_\delta - x_0| < \delta_0$ but $|f(x_\delta) - f(x_0)| \ge \varepsilon_0$.

Take $\delta = \frac{1}{n}$. Then we get a sequence $\{x_n\} \subset I$ with $|x_n - x_0| < \frac{1}{n}$ and $|f(x_n) - f(x_0)| \ge \varepsilon_0$. Now, since $|x_n - x_0| < \frac{1}{n}$, we have $\lim_{n \to \infty} x_n = x_0$.

Hence, by continuity at x_0 , we must have $\lim_{n\to\infty} f(x_n) = f(x_0)$, which contradicts $|f(x_n) - f(x_0)| \ge \varepsilon_0 \ \forall n \in \mathbb{N}$.

 (\Leftarrow) Let $\{x_n\}$ be a sequence in I with $\lim_{n\to\infty}x_n=x_0$. We need to show $\lim_{n\to\infty}f(x_n)=f(x_0)$.

Let $\varepsilon > 0$. Then $\exists \delta > 0$ such that $x \in I$ and $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

Since $\lim_{n\to\infty} x_n = x_0$, $\exists n_0 \in \mathbb{N}$ such that $|x_n - x_0| < \delta$ for all $n \ge n_0$. Therefore, $|f(x_n) - f(x_0)| < \varepsilon$ for all $n \ge n_0$. Hence, $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Example. 1. $f(x) = x^n$, $n \ge 1$: It is easier to check with the ε - δ definition.

2. $f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$: f is continuous at 0. Use the ε - δ method; $|100x| \leq x$.

Theorem. Let $f: I \to \mathbb{R}$ be continuous at $x_0 \in I$. Then so are |f| and kf for any $k \in \mathbb{R}$.

Proof. For |f|, use

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)|.$$

For kf, use

$$|kf(x) - kf(x_0)| = |k||f(x) - f(x_0)|.$$

Theorem. Let f and g be continuous at $x_0 \in I$. Then:

- 1. f + g is continuous at x_0 .
- 2. fg is continuous at x_0 .
- 3. If $g(x_0) \neq 0$, then $\frac{f}{g}$ is continuous at x_0 .

Proof. Let $\{x_n\} \subset I$ be such that $x_n \to x_0$. Then:

$$\lim(f+g)(x_n) = \lim f(x_n) + \lim g(x_n) = f(x_0) + g(x_0).$$

$$\lim(fg)(x_n) = \lim f(x_n) \cdot \lim g(x_n) = f(x_0)g(x_0).$$

$$\lim \frac{f}{g}(x_n) = \frac{\lim f(x_n)}{\lim g(x_n)} = \frac{f(x_0)}{g(x_0)}.$$

Here we use the fact that $g(x) \neq 0$ for sufficiently large n as a consequence of the fact that $g(x_0) \neq 0$ and g is continuous at x_0 .

Theorem. If $f: I \to J$ is continuous at $x_0 \in I$ and $g: J \to K$ is continuous at $f(x_0) \in J$, then $g \circ f$ is continuous at x_0 .

Proof. Let $\varepsilon > 0$. As g is continuous at $f(x_0)$, $\exists \delta > 0$ such that

$$y \in J \text{ and } |y - f(x_0)| < \delta \implies |g(y) - g(f(x_0))| < \varepsilon.$$
 (*)

Since f is continuous at x_0 , $\exists \eta > 0$ such that

$$x \in I \text{ and } |x - x_0| < \eta \implies |f(x) - f(x_0)| < \delta.$$

Thus, for $x \in I$ with $|x - x_0| < \eta$, we have $|f(x) - f(x_0)| < \delta$, and by (*),

$$|g(f(x)) - g(f(x_0))| < \varepsilon.$$

Hence, $g \circ f$ is continuous at x_0 .

Definition. We say that $f: I \to \mathbb{R}$ is bounded if $f(I) = \{f(x) : x \in I\}$ is bounded in \mathbb{R} , i.e., if $\exists M \ge 0$ such that $|f(x)| \le M \ \forall x \in I$.

Theorem. Let $f: [a,b] \to \mathbb{R}$ be continuous. Then f is bounded. Moreover, f attains its supremum and infimum values in [a,b], i.e., $\exists x_1, x_2 \in [a,b]$ such that

$$f(x_1) \le f(x) \le f(x_2) \quad \forall x \in [a, b].$$

Proof. "f is bounded": By contradiction, assume f is not bounded. Then for each $n \in \mathbb{N}$, $\exists x_n \in [a, b]$ such that $|f(x_n)| > n$, which implies $\lim |f(x_n)| = \infty$.

But $x_n \in [a,b] \implies \{x_n\}$ is bounded $\implies \{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$ converging to $x_0 \in \mathbb{R}$. Since $a \leq x_{n_k} \leq b$, $x_0 \in [a,b]$.

By continuity of f on [a,b], we have $f(x_{n_k}) \to f(x_0)$, and hence $|f(x_{n_k})| \to |f(x_0)|$. This contradicts $\lim |f(x_n)| = \infty$.

Now let $M = \sup\{f(x) : x \in [a, b]\}$. Then $M < \infty$ as f is bounded. For $n \in \mathbb{N}, \exists y_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(y_n) \le M.$$

Hence,

$$\lim f(y_n) = M.$$

Since $\{y_n\}$ is bounded, by Bolzano-Weierstrass, \exists a convergent subsequence $\{y_{n_k}\}$ of $\{y_n\}$ converging to $y_0 \in [a, b]$. Since f is continuous at y_0 , we get

$$f(y_0) = \lim f(y_{n_k}) = M.$$

The argument is similar for the infimum.

Remark. 1. f(x) = x is continuous on (0,1) but does not attain its supremum or infimum.

2. $f(x) = \frac{1}{x}$ is continuous on (0,1) but unbounded on (0,1).

Theorem (Intermediate Value Theorem). Let I be an interval, and $f: I \to \mathbb{R}$ be continuous. Then f has the intermediate value property: if $a, b \in I$, a < b, and y lies between f(a) and f(b), then $\exists x \in (a, b)$ such that f(x) = y.

Proof. Without loss of generality, assume that f(a) < f(b) (otherwise work with -f). Let f(a) < y < f(b), and set

$$A = \{ x \in [a, b] \colon f(x) < y \}.$$

Then $a \in A$, and A is bounded. Let $x_0 = \sup A$. We want to check that $f(x_0) = y$.

Claim 1: $f(x_0) \leq y$.

Since $x_0 = \sup A$, for $n \in \mathbb{N}$, $\exists x_n \in A$ such that $x_0 - \frac{1}{n} < x_n \le x_0$. Thus, $\lim x_n = x_0 \implies \lim f(x_n) = x_0$ $f(x_0)$. Since $f(x_n) \leq y$ for all $n \in \mathbb{N}$, we have $f(x_0) \leq y$.

Claim 2: $y \leq f(x_0)$. Let $a_n = \min\{x_0 + \frac{1}{n}, b\}$. Then $x_0 < a_n \leq x_0 + \frac{1}{n}$ for large n. By Claim 1, $\lim a_n = x_0 \implies \lim f(a_n) = f(x_0)$. Also, $f(a_n) > y$ for all $n \in \mathbb{N}$, so $f(x_0) \geq y$.

Combining Claim 1 and Claim 2, we conclude that $f(x_0) = y$.

Corollary. Let I be an interval, and $f: I \to \mathbb{R}$ be continuous. Then f(I) is also an interval (or a singleton).

Proof. As f is continuous, J = f(I) has the property that if $y_1, y_2 \in J$ with $y_1 < y_2$, then $(y_1, y_2) \subseteq J$.

Case 1: $\sup J = \inf J \implies f(I)$ is a singleton set.

Case 2: $\sup J > \inf J$.

Let inf $J < y < \sup J$. We want to show $y \in J$, which implies J is an interval with endpoints inf J and $\sup J$ (which may or may not be in J).

Since $\inf J < y$, $\exists y_1 \in J$ such that $\inf J \leq y_1 < y$. Similarly, since $\sup J > y$, $\exists y_2 \in J$ such that $y < y_2 \le \sup J$.

Thus, $y_1 < y < y_2$, and $y_1, y_2 \in J$. By the intermediate value property, $y \in J$.

Therefore, J is an interval (or a singleton).

Theorem. Let I be an interval and $f: I \to \mathbb{R}$ be strictly increasing such that f(I) is an interval. Then f is continuous.

Proof. Let $x_0 \in I \setminus \{\inf I, \sup I\}$. As f is strictly increasing, f(x) is not an endpoint of f(I), which is an interval. So, $\exists \varepsilon > 0$ such that

$$[f(x_0) - \varepsilon, f(x_0) + \varepsilon] \subseteq f(I).$$

Let $\varepsilon > 0$. Since $[f(x_0) - \varepsilon, f(x_0) + \varepsilon] \subseteq f(I), \exists x_1, x_2 \in I$ such that

$$f(x_1) = f(x_0) - \varepsilon$$
 and $f(x_2) = f(x_0) + \varepsilon$, with $x_1 < x_0 < x_2$.

For $x \in (x_1, x_2)$, we have $f(x_1) < f(x) < f(x_2) \implies |f(x) - f(x_0)| < \varepsilon$. Let $\delta = \min\{x_2 - x_0, x_0 - x_1\}$, and conclude that f is continuous.

Now assume $x_0 = \inf I > -\infty$. Then $f(x_0) = \inf f(I)$. Let $\varepsilon > 0$ small enough such that $[f(x_0), f(x_0) + \varepsilon] \subseteq f(I)$. Then for $z \in (0, \varepsilon)$, $\exists x \in I$ such that $f(x) = f(x_0) + z$.

As f is increasing, we have $x_0 < x_2$, and for all $x \in (x_0, x_2)$, we have

$$f(x_0) < f(x) < f(x_2) \implies |f(x) - f(x_0)| < \varepsilon.$$

Choose $\delta = |x_1 - x_2|$.

Corollary. Let I be an interval, and $f: I \to \mathbb{R}$ be continuous and strictly increasing. Then f(I) is an interval. Let $f^{-1}: f(I) \to I$ be the inverse of f. Then f^{-1} is continuous and strictly increasing.

Proof. Since f is continuous and strictly increasing on an interval, by a previous corollary, f(I) is an interval. Since f is strictly increasing, it is one-to-one on I, and hence f^{-1} is well-defined.

In view of the previous theorem, it is enough to check that f^{-1} is strictly increasing.

Let $y_1, y_2 \in f(I)$ with $y_1 < y_2$. Then $\exists !$ (unique) $x_1, x_2 \in I$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since f is strictly increasing, we get $x_1 < x_2 \implies f^{-1}(y_1) < f^{-1}(y_2)$.

Thus, f^{-1} is strictly increasing.

Theorem. Let f be injective and continuous on an interval I. Then f is strictly increasing or strictly decreasing.

Proof. Claim 1: Let $a, b, c \in I$ with a < b < c. Then f(b) lies between f(a) and f(c).

Proof of Claim 1: Assume not, and let $\max\{f(a), f(c)\} < f(b)$. Let

$$\max\{f(a), f(c)\} < y < f(b).$$

Then by the intermediate value theorem, $\exists x_1 \in (a,b)$ and $x_2 \in (b,c)$ such that

$$f(x_1) = y$$
 and $f(x_2) = y$,

which is a contradiction to the fact that f is injective.

Let $a, b, c \in I$ and f(a) < f(b). We show below that for any $x_1, x_2 \in I$ with $x_1 < x_2$, we have $f(x_1) < f(x_2)$.

Claim 2: If f(x) < f(a) < f(c) for $x \in (a, c)$, then:

- 1. f(x) > f(a) for x > a.
- 2. f(x) < f(c) for x < c.

Proof of Claim 2: Since x < a < c, we have f(x) must lie between f(a) and f(c).

As f(c) > f(a), we have f(x) < f(c). For x < c, we have either:

$$x < a \implies f(x)$$
 lies between $f(a), f(c), \text{ or } x > b \implies f(x) > f(a)$.

Combining these, f is strictly increasing or strictly decreasing.

Let $y_1, y_2 \in f(I)$, and suppose $y_1 < y_2$. Then:

- 1. If f is strictly increasing, $f^{-1}(y_1) < f^{-1}(y_2)$.
- 2. If f is strictly decreasing, $f^{-1}(y_1) > f^{-1}(y_2)$.

Thus, f must be monotone.