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Definition (Algebraic Number). A complex number o € C is called an algebraic number if there exists a
non-zero polynomial with integer coefficients

p(z) = apa™ + 12" a4 ay, @ €Z, ay £ 0,

such that p(a) = 0. In other words, « is a root of a polynomial with integer coefficients.
The set of all algebraic numbers is denoted by Q or A.

Theorem (Rational Zeros Theorem). Suppose cg, ¢1, ..., ¢, are integers and r is a rational number satisfying
the polynomial equation
™ F 1z e+ =0,

where n > 1, ¢, # 0, and ¢g # 0. Let r = § where ¢, d are integers having no common factors and d # 0.

Then ¢ divides ¢y and d divides c,.
In other words, the only rational candidates for solutions of the polynomial equation have the form g,
where ¢ divides ¢y and d divides c,.

Definition (Radicals are not in Q). Ezample 3: +/17 is not a rational number.
Proof: The only possible rational solutions of the equation

22 —17=0

are 1, £17. None of these numbers are solutions, and thus 4/17 is not a rational number.

Definition (Order on Q). The set Q also has an order structure < satisfying the following properties:
O1. Given a and b, either a <bor b < a.

02. If a <band b <a, then a = b.

0O3. Ifa<band b <¢, then a < c.

O4. If a <b,thena+c<b+ec.

O5. If a < b and 0 < ¢, then ac < be.

Definition (Consequences of the Field Properties). The following are consequences of the field properties
for a,b,c € R:

(i) a+c¢="b+ cimplies a = b.
(ii) a-0=0 for all a.



(iii) (—a)b = —ab for all a,b.

)
(iv) (—a)(=b) = ab for all a,b.
(v) ac =bc and ¢ # 0 imply a = b.
)

(vi) ab =0 implies either ¢ =0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the
properties of an ordered field for a, b, c € R:

(i) If a < b, then —b < —a.
(ii) If a < b and ¢ < 0, then be < ac.

(iii) If 0 < @ and 0 < b, then 0 < ab.

)

)

)

(iv) 0 < a? for all a.

(v)

(vi) If 0 < a, then 0 < a~!
)

(vii) f0<a<b,then0<b ! <a!

Note: a < b means a < b and a # b.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for
a,beR:

(i) |a| > 0 for all a € R.
(ii) |ab| = |a| - |b] for all a,b € R.
(iii) |a +b| < |a| + |b| for all a,b € R (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value

function for a,b € R:
lla] = [b]] < |a — b|

1 Completeness
Definition (Bounded Definitions). Let ) # A C R.

1. We say that A is bounded above if there exists M € R such that a < M for all a € A. In this case, M
is called an upper bound for A. If moreover M € A, then M is called the mazimum of A.

2. We say that A is bounded below if there exists m € R such that m < a for all a € A. In this case, m is
called a lower bound for A. If moreover m € A, then m is called the minimum of A.

3. We say that A is bounded if it is both bounded below and bounded above.



Definition (Supremum and Infimum). Let feqA C R.

1. Let A be bounded above. We say L is a least upper bound for A if:

(a) L is an upper bound for A.
(b) If M is an upper bound for A, then L < M.

This L is also called the supremum of A and we write L = sup A.
2. Let A be bounded below. We say £ is a greatest lower bound for A if:

(a) £ 1is a lower bound for A.

(b) If m is a lower bound for A, then m < {.

This £ is also called the infimum of A and we write £ = inf A.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let § # S C R.

1. We say S has the least upper bound property if for every nonempty subset A of S which is also bounded
above, A has a least upper bound in S.

2. We say S has the greatest lower bound property if for every nonempty subset A of S which is also
bounded below, A has a greatest lower bound in S.

Theorem (Axiom of R). The set of real numbers R has the least upper bound property. In fact, it is the
unique ordered field with the least upper bound property. As a corollary, the set of real numbers R has the
greatest lower bound property.

Property (Archimedean Property of R). For any « € R, there exists an n € N such that < n. This n
depends on .

Proof. Proof by contradiction. Suppose not, then there exists € R such that x > n for all n € N. Hence,
N C R is bounded above. By the least upper bound property of R, we have supN = L exists in R. Then
L — 1 is not an upper bound for N, so there is an m € N such that m > L — 1. But then m +1 € N and
m + 1 > L, contradicting L = supN.

O

Corollary (AP Corollary). If a > 0, b > 0, then there exists n € N such that na > b.

Corollary (AP Corollary). For a € R, there exists n € Z such that n < a <n+ 1.

Proof. If a € Z, take n = a.

For a >0 and a ¢ N, define S ={n €Z:n < a} 0. We claim that there is an m € Z such that m € S
but m+1 ¢ S. If not, m € S implies m + 1 € S, and we have 0 € S, thus by induction NU {0} C S. This
implies N is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have —a > 0. Then there is ¢ € N such that £ < —a < ¢+ 1, and so
A —-—1<a<—{. Taken=—¢—1.

O



Corollary (AP flipped). For e > 0, there exists n € N such that 0 < % < €.

Definition (Density in R). Let set A C R be called dense in R if for any z,y € R with « < y, there exists
an a € A such that z < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers Q is dense in R.

Proof. Let x,y € R with < y. Then there is an n € N such that % <y — x. There exists m € Z such that
m—1<nx <m. Then

and so

noting that 7+ € Q. O

Corollary (Irrationals Dense in Reals). The set of irrational numbers R\ Q is dense in R.

Proof. Let x,y € R with 2 < 5. Then zv/2 < yv/2. By the density of Q in R, there exists r € Q such that
V2 <r< yﬁ, which implies = < Vor < y. Note that VoreR \ Q. O

Definition (Extension to Infinity). The symbols 400, —oo. We adjoin these symbols with R so that
—o00 < a < +oo for all a € R. If fegA C R is not bounded above, we set sup A = +oco. Similarly, if fegA C R
is not bounded below, we set inf A = —co.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function f : NoR. We can
represent this function f as

F), f(2), -

or (f(n))nen, or more commonly (fy)nen, (fn)n>1, or simply (f,). We can also use curly braces, such as
{fn}, to denote the sequence.

Examples:

L. (an)nen with a, =1

2. (an)nen With a, = (=1)"
3. (an)nen with a,, = n?

4. (an)nen with a, = cos (%)



2 Limits and Convergence

Definition (Convergence of a Sequence). A sequence (a,) of real numbers converges if there exists a € R
such that for any given € > 0, there exists an n. € N such that |a, — a| < € for all n > n..
In this case, a is called the limit of the sequence, and we write
a= lim a,
n—oo

or a, — a as n — oco. We say (a,) converges to a. If no such limit a exists, i.e., if the sequence does not
converge, then we say the sequence diverges.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (a,) converges and limy,,o0 @, = @ and limnooo a, = b. We want to show a = b.

Let € > 0. There exist n1,ny € N such that |a, —a| < § for all n > n; and |a, — b < § for all n > ns.
Then for n > max(ni, nz), we have |a, —a| < § and |a, — b\ <3

Therefore, with such n, we have

€ €
|a—b|§|a—an|+|an—b|<§+§:

Since € > 0 is arbitrary, we conclude a = b. O

Example (Limit Examples). Example 1 Show that (a,) with a, =  converges to zero.
Proof. Let ¢ > 0, we need to find n. € N such that |a,, —0| = a,, < € for all n > n.. By the Archimedean
property of R, there exists n. € N such that n. > % Then for n > n., we have

< < €.

S|

1
nE
O
Example 2 Show that (a,) with a,, = (—1)" diverges.
Proof. By contradiction. Suppose a, — a € R. Then |a,, —a| < 5 L for all n > m for some m € N. For
even n > m, we have |1 —a| < 3, and for odd n > m, we have | — 1 — a| < 1. Then

2=14a+1—-a<|l14a|+]1-0qa| <1,

which is a contradiction. O

Example 3 Show that lim,, o 224 = 2.

Proof. Let € > 0. It is enough to show there exists n. € N such that for all n > n., we have

3n+1 3 <
- = €
S5n—2 5 ’
ie.,
11 <
€
5(5n —2)
Note that
! <5 2 &= n> 2 + 1
ke n— n> -1
5e 5  25¢
So choose n. € N satisfying
S 2 n 11
T
Then for all n > n., we have
S 2 n 11
5  25¢’



which implies
- 11 11
€ = .
5(5n—2)  5(bn —2)

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (a,,) be a convergent sequence converging to a € R. Then there exists N € N such that |a, —a| < 1
for all n > N. Thus |a,| < |an, —al + |a] < 1+ |a| for all n > N.
Let M = max{|a1|,...,|an—1]|,1 + |a|}, then for all n € N, |a,| < M. O O

Theorem (Limit Properties). Let (ay,), (b,) be two convergent sequences with limits a,b € R. Then:
1. For k € R, we have lim,, ., ka, = ka.
2. lim, o0 (an +b,) = a+0.
3. lim,, o0 anb, = ab.

4. If a, # 0 for all n € N and a # 0, then lim,, i =

Q=

5. If a, # 0 for all n € N and a # 0, then lim,, o, 2 =

ISEIS

Proof.

1. Let € > 0. Then there exists n. € N such that |a, —a| < -, which implies |ka,, — ka| < e.

2. Let € > 0. Then there exist n;,ns € N such that |a, —a| < § and |b, — b < §. Then for n > n. =
max(ny, ng), we have |(a, + b,) — (a + b)| < e.

3. Let € > 0. We want to find n. € N such that |a,b, — ab| < e. Let M be such that |a,| < M for all n.

Let nq,ne be such that |a, — a| < m for all n > ny and [b, — b| < 5%7. Then

€ €

nbn —abl <lay||b, — b bllan, —al| <M+ - — +|b| - —————= < e

4. Claim: inf{|a,|: n € N} =m > 0. Indeed, there is ny such that for all n > nq, one has |a, — a| < %,
which implies |a,| > |a| — |an, — a| > % So m = inf, |a,| > inf{|a1],...,|an,|, %} > 0.

Now choose n. € N such that |a, — a| < €|la|m. Then

1 1

an a

_lan —al

= < €.
|an||al

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (s,), we write lim s,, = +o00 provided that for
each M > 0, there is a number N such that n > N implies s,, > M.

In this case, we say the sequence diverges to +oo.

Similarly, we write lim s,, = —oo provided that for each M < 0, there is a number N such that n > N
implies s, < M.



Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which
will depend on M) such that n > N implies y/n+7 > M.

To see how big N must be, we “solve” for n in the inequality /n+7 > M. This inequality holds provided
Vn>M—Torn>(M-—7)? Thus, we will take N = (M — 7)2.

Formal Proof.

Let M > 0 and let N = (M — 7). Then n > N implies n > (M — 7)2, hence v/n > M — 7, hence
Vn+ 7> M. This shows lim(y/n + 7) = +o0.

Theorem. Let (s,) and (t,) be sequences such that

lim s, = 4+oc0 and lim ¢, >0
n—oo n— o0

(where lim,, ;o t,, can be finite or +00). Then

lim s,t, = +oo.
n— oo

Proof. Let M > 0 be given. Choose a real number m such that

0<m< lim t,.

n—oo

Such an m exists because lim,, ;o t,, > 0.
There are two cases to consider:

1. Case 1 lim,,_, t,, is finite.

Since lim,,_,~ t, > m, there exists an integer Ny such that for all n > N,

tn, > m.

2. Case 2: lim,,_ o t, = +00.

In this scenario, t,, > m holds for all sufficiently large n, so we can similarly find an integer N7 such
that for all n > Ny,
tn, > m.

Since lim,,_,~ s, = +00, there exists an integer No such that for all n > Na,
Sp > —.
m
Let N = max{Ny, No}. Then, for all n > N,
M
Sptn > — -m =M.
m

Since M was arbitrary, it follows that lim, . Spt, = +00. O




3 Sequences Post Midterm

Definition (Limit Superior). Let (a,) be a sequence of real numbers. The limit superior (or limsup) of
(an) is defined by:

limsupa, = lim sup ag.
n— o0 =00 >n

This is the greatest limit point of the sequence, or equivalently, the largest value to which any subsequence
of (a,) converges.

Definition (Limit Inferior). Let (a,) be a sequence of real numbers. The limit inferior (or liminf) of (ay,)
is defined by:

liminf a,, = lim inf a.
n—00 n—oo k>n

This is the smallest limit point of the sequence, or equivalently, the lowest value to which any subsequence
of (a,) converges.

Definition. A sequence (a,) of real numbers is called:
1. increasing if a,, < a,,41 for all n € N,

. decreasing if a,, > a,41 for all n € N|

2
3. strictly increasing if a,, < a1 for all n € N,
4. strictly decreasing if a,, > a,41 for all n € N.

A sequence that is either increasing or decreasing is called a monotone sequence.
Theorem. All bounded monotone sequences converge.

Proof. Let (s,) be a bounded increasing sequence. Let S denote the set {s, : n € N}, and let u = sup S.
Since S is bounded, u represents a real number. We show lim s,, = u.

Let € > 0. Since u — € is not an upper bound for S, there exists sy such that sy > u — €. Since (s,) is
increasing, we have sy < s, for all n > N. Of course, s, < u for all n, so n > N implies u — € < s, < u,
which implies |s,, — u| < e. This shows lim s,, = u.

The proof for bounded decreasing sequences is left to Exercise 10.2. O

Definition. Let (a,,) be a bounded sequence (convergent or not). Then the limiting behavior of (a,,) depends
on the set of the form

{an:nzN}:UAN.
N

Let us define
uy = inf{a, :n >N} and vy =sup{a,:n > N}.

Then
up Kupg <---<uy <+ and v > v > >N >,

i.e., (uy) is increasing and (vy) is decreasing.

Definition (Cauchy Sequences). A sequence (a,) in R is called Cauchy if for any € > 0, there exists N € N
such that
|an, —am| < e forall m,m > N.



Proposition. Convergent sequences are Cauchy.

Proof. Let (a,) be a Cauchy sequence in R converging to a € R. Let € > 0. Then €¢/2 > 0 and hence there
exists N¢/o € N such that

lan, —a| < % for all n > N /5.
Let n,m > N./5. Then
lan — am| < lan —a| + |la — am| < %—&—%:6.
Hence, (a,) is a Cauchy sequence. O

Lemma. Cauchy sequences are bounded.

Proof. Let (a,) be a Cauchy sequence. Then there exists N € N such that |a, — a,,| < 1 for all n,m > N.
Let
M = max{l|ai|, |az|, ..., |lan—1], |an|+ 1}.

Then for all n =1,..., N — 1, we have |a,| < M. For all n > N, we have
|an| < ‘aN‘+1SM~

Hence, for all n € N, we have |a,| < M. O

Theorem. A sequence (a,) in R converges if and only if (a,) in R is Cauchy.

Proof. (=) This direction follows from the above proposition.
(«) Since (a,) is Cauchy, it is bounded. Then it is enough to check that limsup a,, = liminf a,,.
Let € > 0. Then there exists ny € N such that for all n,m > no,

lan, — am| < €.
This implies:
an < Gy + € for all n,m > no,
Uy, < am + € for all m > no,
Uy, < Up, + €,
limsup a, < Up, < Up, + € < liminfa, + ¢,

ie.,
limsup a,, < liminf a,,.

Since € > 0 is arbitrary, we have limsup a,, = liminf a,,. O]

Definition. Let (k,) be a sequence of natural numbers such that k,; > k, for all n € N. Let (a,) be a
sequence of real numbers. Then the sequence (aj, )nen is called a subsequence of (a,)nen-

Remark. It is easy to see that k, > n for all n € N and hence k,, — oo as n — oc.

Theorem. Every sequence has a monotone subsequence.



Proof. We say that the nth term is the dominant term if a,, > a,, for m > n.

Case 1: There are infinitely many dominant terms. Let ax, be the first dominant term, ag, the next,
and so on. Then clearly, (ag, ) is a decreasing subsequence of (ay,).

Case 2: There are only finitely many dominant terms. Let aj; be the last dominant term in the sequence

ai,asz,.... Let ky > M. Since ay, is not dominant, there exists ko > ki such that ar, > ax,. Since ay, is
not dominant, there exists k3 > ko such that ap, > ax,.

We proceed inductively to construct a subsequence (ay, ) of (an): Assume we have found ki, ..., k,, such
that

Ay < Ay <000 S Ay, -

Then, since ay,, is not dominant, there exists k,,+1 > ky, such that

[0S > ag,,

Thus, we have constructed an increasing subsequence. O

Theorem (Bolzano-Weierstrass). Any bounded sequence has a convergent subsequence.

Proof. Let (a,) be a bounded sequence. Then by the previous theorem, it has a monotone subsequence, say
(an,, ). Since (an, ) is bounded and monotone, it is convergent. O

Theorem. Let (a,) be a sequence in R. Then:
(a) There exists a subsequence whose limit is lim sup,,_, .o @y.

(b) There exists a subsequence whose limit is liminf,,_, ay.

Definition. Let {a,} be a sequence in R. A subsequential limit is any a € RU{—00, 0o} that is the limit
of any subsequence of {a,}.

Remark. If lim, _,o a, = a, then the set of all subsequential limits is {a}.

Theorem. Let {a,} C R and let A be the set of all subsequential limits of {a,,}. Then:
(a) A#0.

(b) sup A = limsup,,_, . a, and inf A = liminf,,_, a,.

(¢) limp o0 an, exists if and only if |A| = 1.

Theorem. Let A denote the set of all subsequential limits of (a,). Suppose {b,} is a sequence in ANR
with b = lim,,_yoo b,,. Then b € A.

Theorem. If lim, ., a, =a € R and a > 0, and (b,) is a sequence in R, then

lim sup(a,b,) = alimsupb,,.

10



Theorem. Let (a,) be a sequence of real numbers. Then

An41 1/n an41

n

lim inf < liminfa,/™ < limsup a}/" < lim sup

a’TL n

Definition (Alternative Definitions of Limit Superior). Let (a,) be a sequence of real numbers. The limit
superior (limsup) can be equivalently defined as:

e Supremum of Subsequence Limits:

k—o0

there exists a subsequence (a,, ) such that lim a,, =¢ } .
n—oo

limsup a,, = sup {E eR

e Infimum of Supremums of Tails:
lim sup a,, = inf (Sup ak) .
n— 00 n> k>n
e Eventually Upper Bounds: For every € > 0, there exists an IV such that for all n > NV,

an < limsupai + €,
k—oco

and there are infinitely many n for which

an > limsup ap — €.
k—o0

e Using Negation and Limit Inferior:

limsup a, = — lim inf(—ay,).
n—oo n—00

Definition (Alternative Definitions of Limit Inferior). Let (a,) be a sequence of real numbers. The limit
inferior (liminf) can be equivalently defined as:

e Infimum of Subsequence Limits:

liminf a,, = inf {E eR ‘ there exists a subsequence (an, ) such that klim O, = €} .
— 00

n—oo

e Supremum of Infimums of Tails:

lim inf a,, = sup (inf ak) .

n— 00 n>1 \k=n

e Eventually Lower Bounds: For every € > 0, there exists an NV such that for all n > IV,

an > liminf ay — ¢,
k—o0

and there are infinitely many n for which

a, < liminf ay + €.
k—o0

e Using Negation and Limit Superior:

liminf a,, = — limsup(—ay,).
n—0o0 n—00

11



4 Series

Definition. Let (a,) be a sequence in R. For n € N, define s, = a1 +as+---+a, = ZZ:1 ar. The series
Yo | an is said to converge if the sequence of partial sums (s,) converges. A series that does not converge
is said to diverge.

Definition. A series > | a,, is said to converge absolutely if the series > 7 | |a,| converges. [Note that
the series Y | |an| either converges or diverges to co.]

Theorem. The series Zf;l a, converges if and only if it satisfies the Cauchy criterion, i.e., for Ve > 0,
AN, € N such that

n+m

>

k=n

< e foralln> N, and m € NU{0}.

Proof. 3°° | a, converges <= (s,) converges <= (s,) is Cauchy.
<= Ve > 0,3N, € N such that |s,, — s,| < e for all m,n > N,.
<= Ve > 0,3N. € N such that ’ZZ;T ak‘ <e foraln>N.,meN.

= Ve>0,3N, € Nsuch that [3232 ax| <e foralln > N, and m € NU{0}. O

Corollary. If ZZO=1 an converges, then lim,_,,, a, = 0.

Theorem (Comparison test). Let (a,) be a series with a,, > 0 for all n € N.
1. If >°°° | a, converges and |b,| < a,, for all n € N, then Y~ b, converges.
2. If 3%, ap, = 0o and b, > a, for all n € N, then > 7 | b, = oco.

Proof. 1. This follows from the fact

n+m

>
k=n

n+m

< Z ag
k=n

and the Cauchy criterion.
2. Since a, < b,, for all n € N,
D bez ) an
k=1 k=1

Since Y, _, ap — o0 as n — 0o, we have >, _; by — 00 as n — 00.

Theorem (The root test). Let Y | a, be a series and let

o = limsup |a, |*/™.

n—oo
Then the series Y~ | ap:
1. converges absolutely if o < 1,

2. diverges if a > 1,

12



3. has no conclusion if o = 1.

Proof. 1. Let € > 0 be such that a + € < 1. Since

o = limsup |a,|"/™ = inf sup |a,|'/™,
n—oo N n>N

there exists N, € N such that

sup{|a,|”":n> N} < a+e
This implies

lan| < (a+¢€)™ for all n > N..
Since > ° (w4 €)™ converges, we conclude that Y > | |a,| converges.

2. There exists a subsequence (ag,) of (a,) such that lim, o |ag, |'/* = a > 1. This implies there
exists N € N such that
la,|/™ > 1 foralln > N,

which leads to
lan| > 1 for all m > N.

This implies lim,, .+, a, 7# 0 and the Cauchy criterion is not satisfied. Thus, Zzozl an does not converge. [

Theorem (The ratio test). Let > -, a, be a series with a,, # 0 for all n € N. Then Y > | a,:

1. converges absolutely if limsup,, ., |*=+| < 1,
2. diverges if liminf,, o |“25| > 1,
3. has no conclusion if liminf,,_, % <1 <limsup,,_,. “Z“

Proof. Recall that
Ap+1

lim inf |a, [/ < limsup |a,|*/™ < lim sup
n—o0 n—oo n—oo

Qn

Parts 1 and 2 follow from the root test. Part 3 uses the same counterexamples as in the root test. O

Theorem (Abel’s criterion). Let (a,) be a decreasing sequence with lim,_, a, = 0. Let (b,) be such that
> pe; by is bounded. Then > ° | a,b,, converges.

Proof. Let t, =Y _; by. As (t,) is bounded, there exists M > 0 such that |¢,| < M for all n € N.
For € > 0, there exists N. € N such that |a,| < 557 for all n > N,. Now,

n+m n+m n+m
E arby = E ap(ty —tp—1) = E (ak — ap1)th + Gnpmt1lngm — Antn_1.
k=n k=n k=n

This implies

n+m

Z akbk
k=n

< M(an — antms1) + Mapiyme1 + Ma, < e for all n > N, and m € NU {0}.

O

Corollary (Leibniz Criterion). If (a,) is decreasing and lim,,_,o a, = 0, then > >  (—1)"a, converges.

13



Theorem (The dyadic criterion). Let (a,) be decreasing and a,, > 0. Then > a,, converges if and only if
ooy 2"agn converges.

Proof. Let s, = > p_oax and t,, = Y p_;2"ase. Then:
2n+1_1

Qna2n+l S E ap S 2na2n.
k=2omn

Using the fact that (a,) is decreasing:

0o
2"+1a2n+1 S 2 Z 2ka2k.
k=n

This implies:
o0 o0
> 2k lay <23 2kay.
k=n k=n

Hence:
thy1 — a1 < Sontr and s, <t +ag.

Since (sy,) converges if and only if (¢,,) converges, we conclude:

oo
Z a, converges if and only if Z 2" agn converges.

n=0

O

Theorem (The Raab-Duhamel Criterion). Let Y a, be a series with a,, > 0 Vn € N. Suppose that Ing € N
and ¢ > 1 such that

n( an —1>>q Vn > ng.
Ap+41

Then the series ), a, converges.

Proof. Let ¢ =1+ € for some € > 0. Then

n( an —1>2q:1+5
Ap41

Nap — NApt1 2> Apt1 + EApy1-

implies

Rearranging, we have
nan, > (n+ Dapt1 + €any1 Vn > ng.

Thus,
noan, > (N + 1)ant1 +eani1 + (n+2)ani2 +eanga + -
n—+p
> (n+p)antp+e Z ar Vn e N.
k=n-+1

This implies
noa
Ung+1+ Qg rm < T"O vn € N.

Therefore, the partial sum of Z:;o:no 41 @n is bounded above by % Since a,, > 0 Vn € N, we conclude
that > a,, converges. O
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Continuity

Definition. Let f: I — R be a function, where I C R. We say that f is continuous at xo € I if for every
sequence {z,} C I with

lim z,, = zo,
n—oo

we have

lim f(z,) = flxo).

If f is continuous at every point of a set S C I, then we say f is continuous on S. We say f is continuous
if it is continuous on I.

Theorem. Let I C R and f: I — R be a function. Then f is continuous at x¢ € I if and only if for all
g > 0, there exists 6 > 0 such that for all z € I with |z — 29| < §, we have

[f (@) = fzo)| <e.

Proof. (=) By contradiction: Assume ey > 0 such that Vg > 0, Jas € I with |xs — zg| < dp but
F(zs) — F(wo)| > 0.

Take 6 = 1. Then we get a sequence {z,,} C I with |z, — zo| < 2 and |f(z,) — f(20)| > 0. Now, since
|z — 20| < %7 we have lim,, oo T, = Zo.

Hence, by continuity at xg, we must have lim, o f(2,) = f(zo), which contradicts |f(z,) — f(x0)| >
eo Vn € N.

(<) Let {x,,} be a sequence in I with lim,,_, @, = z¢. We need to show lim,,_, f(z,) = f(z0).

Let € > 0. Then 36 > 0 such that z € I and |z — x¢| < 0 implies |f(z) — f(x0)| < e.

Since lim,, o0 €, = xg, Ing € N such that |z, — 2| < ¢ for all n > ng. Therefore, |f(x,) — f(z0)] < e
for all n > ng. Hence, lim, o f(2,) = f(x0). O

Example. 1. f(z) =2", n > 1: It is easier to check with the e-¢ definition.

1) if
2. f(x)= weos () 1 z# O: f is continuous at 0. Use the e-d method; |100z| < x.
0 ifz=0

Theorem. Let f: I — R be continuous at x¢ € I. Then so are |f| and kf for any k € R.

Proof. For |f], use
1f (@) = 1 (zo)l| < [f(2) = f(zo)l-
For kf, use
[k f () = kf(zo)l = [K[[f(x) = f(zo)].

Theorem. Let f and g be continuous at z¢ € I. Then:
1. f+ g is continuous at zg.
2. fg is continuous at xg.
f

3. If g(zp) # 0, then 3 is continuous at xg.

15



Proof. Let {x,} C I be such that x,, — x¢. Then:

lm(f + g)(zn) = lim f(zn) + limg(zn) = f(z0) + g(20)-

lim(fg)(xy) = lim f(x,) - limg(z,) = f(zo)g(xo).

f

lim = (x,,
g( )

_lim f(z,) _ f(o)
limg(z,)  g(xo)

Here we use the fact that g(z) # 0 for sufficiently large n as a consequence of the fact that g(zg) # 0 and ¢

is continuous at zg. O

Theorem. If f: I — J is continuous at xg € I and ¢g: J — K is continuous at f(xz¢) € J, then go f is
continuous at xg.

Proof. Let € > 0. As g is continuous at f(zg), 36 > 0 such that
ye Jand Jy— f(wo)l <8 — |gly) — g(f(@o))| < e. *)
Since f is continuous at xg, 31 > 0 such that
xeland |z —xol <n = |f(x) = fzo)] <.
Thus, for x € I with |x — x| < n, we have |f(z) — f(zo)| < 0, and by (%),

l9(f (2)) — g(f (o)) <e.

Hence, g o f is continuous at xzg. O

Definition. We say that f: I — R is bounded if f(I) = {f(z): z € I} is bounded in R, i.e., if 3M > 0
such that |f(z)| < M Vx € I.

Theorem. Let f: [a,b] — R be continuous. Then f is bounded. Moreover, f attains its supremum and
infimum values in [a, b], i.e., 3z, z2 € [a,b] such that

f(@1) < f(2) < faz) Yz €a,b].

Proof. “f is bounded”: By contradiction, assume f is not bounded. Then for each n € N, Jx,, € [a,}]
such that |f(z,)| > n, which implies lim|f(z,)| = oo.

But z,, € [a,b] = {x,} is bounded = {z,} has a convergent subsequence {z,,} converging to
xo € R. Since a < z,,, < b, z¢ € [a,b].

By continuity of f on [a,b], we have f(x,,) — f(z), and hence |f(zn,)| — |f(z0)|. This contradicts
lim| f (z,,)] = 0.

Now let M = sup{f(z): = € [a,b]}. Then M < oo as f is bounded. For n € N, Jy,, € [a, b] such that

M_l<f(yn)§M
n

Hence,
lim f(y,) = M.
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Since {y,} is bounded, by Bolzano-Weierstrass, 3 a convergent subsequence {y,, } of {y,} converging to
Yo € [a,b]. Since f is continuous at yg, we get

fyo) = lim f(yn,) = M.
The argument is similar for the infimum. O O
Remark. 1. f(z) =z is continuous on (0, 1) but does not attain its supremum or infimum.

2. f(z) =1 is continuous on (0,1) but unbounded on (0, 1).

Theorem (Intermediate Value Theorem). Let I be an interval, and f: I — R be continuous. Then f has
the intermediate value property: if a,b € I, a < b, and y lies between f(a) and f(b), then 3z € (a,b) such

that f(z) =y.

Proof. Without loss of generality, assume that f(a) < f(b) (otherwise work with —f). Let f(a) <y < f(b),
and set

A={zx €la,b]: f(x) <y}
Then a € A, and A is bounded. Let xg = sup A. We want to check that f(xq) = y.

Claim 1: f(zg) <y.
Since g = sup A, for n € N, 9z, € A such that zy — % < zp < zg. Thus, limz, =2y = lim f(z,) =
f(zp). Since f(z,) <y for all n € N, we have f(zq) < y.

Claim 2: y < f(zo).
Let a,, = min{zo + %, b}. Then xg < a, < xo Jr% for large n. By Claim 1, lima,, = ¢ = lim f(a,) =
f(xo). Also, f(a,) >y for all n € N, so f(z¢) > v.

Combining Claim 1 and Claim 2, we conclude that f(z¢) = y. O

Corollary. Let I be an interval, and f: I — R be continuous. Then f(I) is also an interval (or a singleton).

Proof. As f is continuous, J = f(I) has the property that if y1,y2 € J with y1 < yo, then (y1,y2) C J.
Case 1: supJ =inf J = f(I) is a singleton set.
Case 2: supJ > inf J.
Let inf J < y < supJ. We want to show y € J, which implies J is an interval with endpoints inf J and
sup J (which may or may not be in J).
Since inf J < y, Jy; € J such that inf J < y; < y. Similarly, since supJ > y, Jys € J such that

Yy <y2 <supd.
Thus, y1 < y < Y2, and y1,y2 € J. By the intermediate value property, y € J.
Therefore, J is an interval (or a singleton). O O

Theorem. Let I be an interval and f: I — R be strictly increasing such that f(I) is an interval. Then f
is continuous.

Proof. Let xg € I\ {inf I,supl}. As f is strictly increasing, f(x) is not an endpoint of f(I), which is an
interval. So, 3¢ > 0 such that

[f(z0) — &, f(wo) + ] € f(I).
Let € > 0. Since [f(xo) — &, f(zo) + €] C f(I), Jx1, 22 € I such that

fa1) = f(wo) —e and f(xs) = f(wo) +&, with a <o < 2.
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For z € (z1,x2), we have f(z1) < f(z) < f(z2) = |f(z) — f(zo)| <e. Let § = min{za — xo, 20 — 21},
and conclude that f is continuous.

Now assume z¢ = inf I > —oo. Then f(z¢) = inf f(I). Let € > 0 small enough such that [f(x¢), f(zo) +
] C f(I). Then for z € (0,¢), 3z € I such that f(x) = f(zo) + 2.
As f is increasing, we have zp < x3, and for all © € (z¢, z2), we have

flwo) < f(a) < fla2) = |f(z) = flzo)| <e.
Choose 6 = |z — za). O

Corollary. Let I be an interval, and f: I — R be continuous and strictly increasing. Then f(I) is an
interval. Let f=1: f(I) — I be the inverse of f. Then f~! is continuous and strictly increasing.

Proof. Since f is continuous and strictly increasing on an interval, by a previous corollary, f(I) is an interval.
Since f is strictly increasing, it is one-to-one on I, and hence f~! is well-defined.

In view of the previous theorem, it is enough to check that f~! is strictly increasing.

Let y1,y2 € f(I) with y1 < y2. Then 3! (unique) 1,22 € I such that f(x1) = y; and f(z2) = y2. Since
f is strictly increasing, we get 1 < o = f 1 (y1) < f~ (y2).

Thus, f~! is strictly increasing. O

Theorem. Let f be injective and continuous on an interval I. Then f is strictly increasing or strictly
decreasing.

Proof. Claim 1: Let a,b,c € I with a < b < ¢. Then f(b) lies between f(a) and f(c).
Proof of Claim 1: Assume not, and let max{f(a), f(c)} < f(b). Let

max{f(a), f(c)} <y < f(b).

Then by the intermediate value theorem, 321 € (a,b) and z2 € (b, ¢) such that
fl@) =y and f(z2) =y,

which is a contradiction to the fact that f is injective.

Let a,b,c € I and f(a) < f(b). We show below that for any 1,29 € I with z; < x9, we have

far) < f(xa).
Claim 2: If f(z) < f(a) < f(c) for x € (a,c), then:

1. f(z) > f(a) for z > a.
2. f(z) < f(c) for z < c.

Proof of Claim 2: Since z < a < ¢, we have f(z) must lie between f(a) and f(c).
As f(c) > f(a), we have f(z) < f(c). For z < ¢, we have either:

x <a = f(x) lies between f(a), f(c), or x>b = f(z)> f(a).

Combining these, f is strictly increasing or strictly decreasing.
Let y1,y2 € f(I), and suppose y; < y2. Then:

1. If f is strictly increasing, f~1(y1) < f~1(y2).

2. If f is strictly decreasing, f~1(y1) > f~*(y2).

Thus, f must be monotone. O
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