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Definition (Algebraic Number). A complex number α ∈ C is called an algebraic number if there exists a
non-zero polynomial with integer coefficients

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ Z, an ̸= 0,

such that p(α) = 0. In other words, α is a root of a polynomial with integer coefficients.
The set of all algebraic numbers is denoted by Q or A.

Theorem (Rational Zeros Theorem). Suppose c0, c1, . . . , cn are integers and r is a rational number satisfying
the polynomial equation

cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 = 0,

where n ≥ 1, cn ̸= 0, and c0 ̸= 0. Let r = c
d where c, d are integers having no common factors and d ̸= 0.

Then c divides c0 and d divides cn.
In other words, the only rational candidates for solutions of the polynomial equation have the form c

d ,
where c divides c0 and d divides cn.

Definition (Radicals are not in Q). Example 3:
√
17 is not a rational number.

Proof: The only possible rational solutions of the equation

x2 − 17 = 0

are ±1,±17. None of these numbers are solutions, and thus
√
17 is not a rational number.

Definition (Order on Q). The set Q also has an order structure ≤ satisfying the following properties:

O1. Given a and b, either a ≤ b or b ≤ a.

O2. If a ≤ b and b ≤ a, then a = b.

O3. If a ≤ b and b ≤ c, then a ≤ c.

O4. If a ≤ b, then a+ c ≤ b+ c.

O5. If a ≤ b and 0 ≤ c, then ac ≤ bc.

Definition (Consequences of the Field Properties). The following are consequences of the field properties
for a, b, c ∈ R:

(i) a+ c = b+ c implies a = b.

(ii) a · 0 = 0 for all a.
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(iii) (−a)b = −ab for all a, b.

(iv) (−a)(−b) = ab for all a, b.

(v) ac = bc and c ̸= 0 imply a = b.

(vi) ab = 0 implies either a = 0 or b = 0.

Definition (Consequences of the Properties of an Ordered Field). The following are consequences of the
properties of an ordered field for a, b, c ∈ R:

(i) If a ≤ b, then −b ≤ −a.

(ii) If a ≤ b and c ≤ 0, then bc ≤ ac.

(iii) If 0 ≤ a and 0 ≤ b, then 0 ≤ ab.

(iv) 0 ≤ a2 for all a.

(v) 0 < 1.

(vi) If 0 < a, then 0 < a−1.

(vii) If 0 < a < b, then 0 < b−1 < a−1.

Note: a < b means a ≤ b and a ̸= b.

Theorem (Triangle Inequality and Misc). The following properties hold for the absolute value function for
a, b ∈ R:

(i) |a| ≥ 0 for all a ∈ R.

(ii) |ab| = |a| · |b| for all a, b ∈ R.

(iii) |a+ b| ≤ |a|+ |b| for all a, b ∈ R (Triangle Inequality).

Corollary (Consequence of the Triangle Inequality). The following property holds for the absolute value
function for a, b ∈ R:

||a| − |b|| ≤ |a− b|

1 Completeness

Definition (Bounded Definitions). Let ∅ ≠ A ⊆ R.

1. We say that A is bounded above if there exists M ∈ R such that a ≤ M for all a ∈ A. In this case, M
is called an upper bound for A. If moreover M ∈ A, then M is called the maximum of A.

2. We say that A is bounded below if there exists m ∈ R such that m ≤ a for all a ∈ A. In this case, m is
called a lower bound for A. If moreover m ∈ A, then m is called the minimum of A.

3. We say that A is bounded if it is both bounded below and bounded above.
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Definition (Supremum and Infimum). Let ∅eqA ⊆ R.

1. Let A be bounded above. We say L is a least upper bound for A if:

(a) L is an upper bound for A.

(b) If M is an upper bound for A, then L ≤ M .

This L is also called the supremum of A and we write L = supA.

2. Let A be bounded below. We say ℓ is a greatest lower bound for A if:

(a) ℓ is a lower bound for A.

(b) If m is a lower bound for A, then m ≤ ℓ.

This ℓ is also called the infimum of A and we write ℓ = inf A.

Definition (Least Upper Bound and Greatest Lower Bound Properties). Let ∅ ≠ S ⊆ R.

1. We say S has the least upper bound property if for every nonempty subset A of S which is also bounded
above, A has a least upper bound in S.

2. We say S has the greatest lower bound property if for every nonempty subset A of S which is also
bounded below, A has a greatest lower bound in S.

Theorem (Axiom of R). The set of real numbers R has the least upper bound property. In fact, it is the
unique ordered field with the least upper bound property. As a corollary, the set of real numbers R has the
greatest lower bound property.

Property (Archimedean Property of R). For any x ∈ R, there exists an n ∈ N such that x < n. This n
depends on x.

Proof. Proof by contradiction. Suppose not, then there exists x ∈ R such that x ≥ n for all n ∈ N. Hence,
N ⊆ R is bounded above. By the least upper bound property of R, we have supN = L exists in R. Then
L − 1 is not an upper bound for N, so there is an m ∈ N such that m > L − 1. But then m + 1 ∈ N and
m+ 1 > L, contradicting L = supN.

Corollary (AP Corollary). If a > 0, b > 0, then there exists n ∈ N such that na > b.

Corollary (AP Corollary). For a ∈ R, there exists n ∈ Z such that n ≤ a < n+ 1.

Proof. If a ∈ Z, take n = a.
For a > 0 and a /∈ N, define S = {n ∈ Z : n < a} ∋ 0. We claim that there is an m ∈ Z such that m ∈ S

but m+ 1 /∈ S. If not, m ∈ S implies m+ 1 ∈ S, and we have 0 ∈ S, thus by induction N ∪ {0} ⊆ S. This
implies N is bounded above as S is, which is a contradiction. Take n = m.

For non-integer a < 0, we have −a > 0. Then there is ℓ ∈ N such that ℓ < −a < ℓ + 1, and so
−ℓ− 1 < a ≤ −ℓ. Take n = −ℓ− 1.
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Corollary (AP flipped). For ϵ > 0, there exists n ∈ N such that 0 < 1
n < ϵ.

Definition (Density in R). Let set A ⊆ R be called dense in R if for any x, y ∈ R with x < y, there exists
an a ∈ A such that x < a < y.

Theorem (Rationals Dense in Reals). The set of rational numbers Q is dense in R.

Proof. Let x, y ∈ R with x < y. Then there is an n ∈ N such that 1
n < y − x. There exists m ∈ Z such that

m− 1 ≤ nx < m. Then
m− 1

n
≤ x <

m

n

and so

x <
m

n
≤ x+

1

n
< y,

noting that m
n ∈ Q.

Corollary (Irrationals Dense in Reals). The set of irrational numbers R \Q is dense in R.

Proof. Let x, y ∈ R with x < y. Then x
√
2 < y

√
2. By the density of Q in R, there exists r ∈ Q such that

x
√
2 < r < y

√
2, which implies x <

√
2r < y. Note that

√
2r ∈ R \Q.

Definition (Extension to Infinity). The symbols +∞, −∞. We adjoin these symbols with R so that
−∞ < a < +∞ for all a ∈ R. If ∅eqA ⊆ R is not bounded above, we set supA = +∞. Similarly, if ∅eqA ⊆ R
is not bounded below, we set inf A = −∞.

Definition (Sequences of Real Numbers). A sequence of real numbers is a function f : NoR. We can
represent this function f as

f(1), f(2), . . .

or (f(n))n∈N, or more commonly (fn)n∈N, (fn)n≥1, or simply (fn). We can also use curly braces, such as
{fn}, to denote the sequence.

Examples:

1. (an)n∈N with an = 1
n

2. (an)n∈N with an = (−1)n

3. (an)n∈N with an = n2

4. (an)n∈N with an = cos
(
nπ
2

)
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2 Limits and Convergence

Definition (Convergence of a Sequence). A sequence (an) of real numbers converges if there exists a ∈ R
such that for any given ϵ > 0, there exists an nϵ ∈ N such that |an − a| < ϵ for all n ≥ nϵ.

In this case, a is called the limit of the sequence, and we write

a = lim
n→∞

an

or an → a as n → ∞. We say (an) converges to a. If no such limit a exists, i.e., if the sequence does not
converge, then we say the sequence diverges.

Theorem (Uniqueness of Limit). The limit of a sequence is unique.

Proof. Assume (an) converges and limno∞ an = a and limno∞ an = b. We want to show a = b.
Let ϵ > 0. There exist n1, n2 ∈ N such that |an − a| < ϵ

2 for all n ≥ n1 and |an − b| < ϵ
2 for all n ≥ n2.

Then for n ≥ max(n1, n2), we have |an − a| < ϵ
2 and |an − b| < ϵ

2 .
Therefore, with such n, we have

|a− b| ≤ |a− an|+ |an − b| < ϵ

2
+

ϵ

2
= ϵ.

Since ϵ > 0 is arbitrary, we conclude a = b.

Example (Limit Examples). Example 1 Show that (an) with an = 1
n converges to zero.

Proof. Let ϵ > 0, we need to find nϵ ∈ N such that |an−0| = an < ϵ for all n ≥ nϵ. By the Archimedean
property of R, there exists nϵ ∈ N such that nϵ >

1
ϵ . Then for n ≥ nϵ, we have

1

n
≤ 1

nϵ
< ϵ.

Example 2 Show that (an) with an = (−1)n diverges.
Proof. By contradiction. Suppose an → a ∈ R. Then |an − a| < 1

2 for all n ≥ m for some m ∈ N. For
even n ≥ m, we have |1− a| < 1

2 , and for odd n ≥ m, we have | − 1− a| < 1
2 . Then

2 = 1 + a+ 1− a ≤ |1 + a|+ |1− a| < 1,

which is a contradiction.
Example 3 Show that limn→∞

3n+1
5n−2 = 3

5 .
Proof. Let ϵ > 0. It is enough to show there exists nϵ ∈ N such that for all n ≥ nϵ, we have∣∣∣∣3n+ 1

5n− 2
− 3

5

∣∣∣∣ < ϵ,

i.e.,
11

5(5n− 2)
< ϵ.

Note that
11

5ϵ
< 5n− 2 ⇐⇒ n >

2

5
+

11

25ϵ
.

So choose nϵ ∈ N satisfying

nϵ >
2

5
+

11

25ϵ
.

Then for all n ≥ nϵ, we have

n >
2

5
+

11

25ϵ
,
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which implies

ϵ >
11

5(5n− 2)
=

11

5(5n− 2)
.

Theorem (Convergent Sequences are Bounded). Convergent sequences are bounded.

Proof. Let (an) be a convergent sequence converging to a ∈ R. Then there exists N ∈ N such that |an−a| < 1
for all n ≥ N . Thus |an| ≤ |an − a|+ |a| < 1 + |a| for all n ≥ N .

Let M = max{|a1|, . . . , |aN−1|, 1 + |a|}, then for all n ∈ N, |an| ≤ M .

Theorem (Limit Properties). Let (an), (bn) be two convergent sequences with limits a, b ∈ R. Then:

1. For k ∈ R, we have limn→∞ kan = ka.

2. limn→∞(an + bn) = a+ b.

3. limn→∞ anbn = ab.

4. If an ̸= 0 for all n ∈ N and a ̸= 0, then limn→∞
1
an

= 1
a .

5. If an ̸= 0 for all n ∈ N and a ̸= 0, then limn→∞
bn
an

= b
a .

Proof.

1. Let ϵ > 0. Then there exists nϵ ∈ N such that |an − a| < ϵ
k , which implies |kan − ka| < ϵ.

2. Let ϵ > 0. Then there exist n1, n2 ∈ N such that |an − a| < ϵ
2 and |bn − b| < ϵ

2 . Then for n ≥ nϵ =
max(n1, n2), we have |(an + bn)− (a+ b)| < ϵ.

3. Let ϵ > 0. We want to find nϵ ∈ N such that |anbn − ab| < ϵ. Let M be such that |an| ≤ M for all n.
Let n1, n2 be such that |an − a| < ϵ

2(|b|+1) for all n ≥ n1 and |bn − b| < ϵ
2M . Then

|anbn − ab| ≤ |an||bn − b|+ |b||an − a| < M · ϵ

2M
+ |b| · ϵ

2(|b|+ 1)
< ϵ.

4. Claim: inf{|an| : n ∈ N} = m > 0. Indeed, there is n1 such that for all n ≥ n1, one has |an − a| < |a|
2 ,

which implies |an| ≥ |a| − |an − a| ≥ |a|
2 . So m = infn |an| ≥ inf{|a1|, . . . , |an1

|, |a|
2 } > 0.

Now choose nϵ ∈ N such that |an − a| < ϵ|a|m. Then∣∣∣∣ 1an − 1

a

∣∣∣∣ = |an − a|
|an||a|

< ϵ.

5. Combine (3) and (4).

Definition (Extension of Limits to Infinity). For a sequence (sn), we write lim sn = +∞ provided that for
each M > 0, there is a number N such that n > N implies sn > M .

In this case, we say the sequence diverges to +∞.
Similarly, we write lim sn = −∞ provided that for each M < 0, there is a number N such that n > N

implies sn < M .
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Example (Divergence to Infinity). We need to consider an arbitrary M > 0 and show there exists N (which
will depend on M) such that n > N implies

√
n+ 7 > M .

To see how big N must be, we “solve” for n in the inequality
√
n+7 > M . This inequality holds provided√

n > M − 7 or n > (M − 7)2. Thus, we will take N = (M − 7)2.
Formal Proof.
Let M > 0 and let N = (M − 7)2. Then n > N implies n > (M − 7)2, hence

√
n > M − 7, hence√

n+ 7 > M . This shows lim(
√
n+ 7) = +∞.

Theorem. Let (sn) and (tn) be sequences such that

lim
n→∞

sn = +∞ and lim
n→∞

tn > 0

(where limn→∞ tn can be finite or +∞). Then

lim
n→∞

sntn = +∞.

Proof. Let M > 0 be given. Choose a real number m such that

0 < m < lim
n→∞

tn.

Such an m exists because limn→∞ tn > 0.
There are two cases to consider:

1. Case 1 limn→∞ tn is finite.

Since limn→∞ tn > m, there exists an integer N1 such that for all n > N1,

tn > m.

2. Case 2: limn→∞ tn = +∞.

In this scenario, tn > m holds for all sufficiently large n, so we can similarly find an integer N1 such
that for all n > N1,

tn > m.

Since limn→∞ sn = +∞, there exists an integer N2 such that for all n > N2,

sn >
M

m
.

Let N = max{N1, N2}. Then, for all n > N ,

sntn >
M

m
·m = M.

Since M was arbitrary, it follows that limn→∞ sntn = +∞.
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3 Sequences Post Midterm

Definition (Limit Superior). Let (an) be a sequence of real numbers. The limit superior (or lim sup) of
(an) is defined by:

lim sup
n→∞

an = lim
n→∞

sup
k≥n

ak.

This is the greatest limit point of the sequence, or equivalently, the largest value to which any subsequence
of (an) converges.

Definition (Limit Inferior). Let (an) be a sequence of real numbers. The limit inferior (or lim inf) of (an)
is defined by:

lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak.

This is the smallest limit point of the sequence, or equivalently, the lowest value to which any subsequence
of (an) converges.

Definition. A sequence (an) of real numbers is called:

1. increasing if an ≤ an+1 for all n ∈ N,

2. decreasing if an ≥ an+1 for all n ∈ N,

3. strictly increasing if an < an+1 for all n ∈ N,

4. strictly decreasing if an > an+1 for all n ∈ N.

A sequence that is either increasing or decreasing is called a monotone sequence.

Theorem. All bounded monotone sequences converge.

Proof. Let (sn) be a bounded increasing sequence. Let S denote the set {sn : n ∈ N}, and let u = supS.
Since S is bounded, u represents a real number. We show lim sn = u.

Let ϵ > 0. Since u− ϵ is not an upper bound for S, there exists sN such that sN > u− ϵ. Since (sn) is
increasing, we have sN ≤ sn for all n ≥ N . Of course, sn ≤ u for all n, so n > N implies u − ϵ < sn ≤ u,
which implies |sn − u| < ϵ. This shows lim sn = u.

The proof for bounded decreasing sequences is left to Exercise 10.2.

Definition. Let (an) be a bounded sequence (convergent or not). Then the limiting behavior of (an) depends
on the set of the form

{an : n ≥ N} =
⋃
N

AN .

Let us define
uN = inf{an : n ≥ N} and vN = sup{an : n ≥ N}.

Then
u1 ≤ u2 ≤ · · · ≤ uN ≤ · · · and v1 ≥ v2 ≥ · · · ≥ vN ≥ · · · ,

i.e., (uN ) is increasing and (vN ) is decreasing.

Definition (Cauchy Sequences). A sequence (an) in R is called Cauchy if for any ϵ > 0, there exists N ∈ N
such that

|an − am| < ϵ for all n,m ≥ N.
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Proposition. Convergent sequences are Cauchy.

Proof. Let (an) be a Cauchy sequence in R converging to a ∈ R. Let ϵ > 0. Then ϵ/2 > 0 and hence there
exists Nϵ/2 ∈ N such that

|an − a| < ϵ

2
for all n ≥ Nϵ/2.

Let n,m ≥ Nϵ/2. Then

|an − am| ≤ |an − a|+ |a− am| < ϵ

2
+

ϵ

2
= ϵ.

Hence, (an) is a Cauchy sequence.

Lemma. Cauchy sequences are bounded.

Proof. Let (an) be a Cauchy sequence. Then there exists N ∈ N such that |an − am| < 1 for all n,m ≥ N .
Let

M = max{|a1|, |a2|, . . . , |aN−1|, |aN |+ 1}.

Then for all n = 1, . . . , N − 1, we have |an| ≤ M . For all n ≥ N , we have

|an| ≤ |aN |+ 1 ≤ M.

Hence, for all n ∈ N, we have |an| ≤ M .

Theorem. A sequence (an) in R converges if and only if (an) in R is Cauchy.

Proof. (⇒) This direction follows from the above proposition.
(⇐) Since (an) is Cauchy, it is bounded. Then it is enough to check that lim sup an = lim inf an.
Let ϵ > 0. Then there exists n2 ∈ N such that for all n,m ≥ n2,

|an − am| < ϵ.

This implies:
an < am + ϵ for all n,m ≥ n2,

un2
≤ am + ϵ for all m ≥ n2,

un2 ≤ un2 + ϵ,

lim sup an ≤ un2 ≤ un2 + ϵ ≤ lim inf an + ϵ,

i.e.,
lim sup an ≤ lim inf an.

Since ϵ > 0 is arbitrary, we have lim sup an = lim inf an.

Definition. Let (kn) be a sequence of natural numbers such that kn+1 > kn for all n ∈ N. Let (an) be a
sequence of real numbers. Then the sequence (akn

)n∈N is called a subsequence of (an)n∈N.

Remark. It is easy to see that kn ≥ n for all n ∈ N and hence kn → ∞ as n → ∞.

Theorem. Every sequence has a monotone subsequence.
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Proof. We say that the nth term is the dominant term if an > am for m > n.
Case 1: There are infinitely many dominant terms. Let ak1 be the first dominant term, ak2 the next,

and so on. Then clearly, (akn
) is a decreasing subsequence of (an).

Case 2: There are only finitely many dominant terms. Let aM be the last dominant term in the sequence
a1, a2, . . .. Let k1 > M . Since ak1

is not dominant, there exists k2 > k1 such that ak2
≥ ak1

. Since ak2
is

not dominant, there exists k3 > k2 such that ak3 ≥ ak2 .
We proceed inductively to construct a subsequence (akn) of (an): Assume we have found k1, . . . , km such

that
ak1

≤ ak2
≤ · · · ≤ akm

.

Then, since akm
is not dominant, there exists km+1 > km such that

akm+1
≥ akm

.

Thus, we have constructed an increasing subsequence.

Theorem (Bolzano-Weierstrass). Any bounded sequence has a convergent subsequence.

Proof. Let (an) be a bounded sequence. Then by the previous theorem, it has a monotone subsequence, say
(ank

). Since (ank
) is bounded and monotone, it is convergent.

Theorem. Let (an) be a sequence in R. Then:

(a) There exists a subsequence whose limit is lim supn→∞ an.

(b) There exists a subsequence whose limit is lim infn→∞ an.

Definition. Let {an} be a sequence in R. A subsequential limit is any a ∈ R∪{−∞,∞} that is the limit
of any subsequence of {an}.

Remark. If limn→∞ an = a, then the set of all subsequential limits is {a}.

Theorem. Let {an} ⊆ R and let A be the set of all subsequential limits of {an}. Then:

(a) A ̸= ∅.

(b) supA = lim supn→∞ an and inf A = lim infn→∞ an.

(c) limn→∞ an exists if and only if |A| = 1.

Theorem. Let A denote the set of all subsequential limits of (an). Suppose {bn} is a sequence in A ∩ R
with b = limn→∞ bn. Then b ∈ A.

Theorem. If limn→∞ an = a ∈ R and a > 0, and (bn) is a sequence in R, then

lim sup(anbn) = a lim sup bn.
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Theorem. Let (an) be a sequence of real numbers. Then

lim inf

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf a1/nn ≤ lim sup a1/nn ≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣ .

Definition (Alternative Definitions of Limit Superior). Let (an) be a sequence of real numbers. The limit
superior (lim sup) can be equivalently defined as:

• Supremum of Subsequence Limits:

lim sup
n→∞

an = sup

{
ℓ ∈ R

∣∣∣∣ there exists a subsequence (ank
) such that lim

k→∞
ank

= ℓ

}
.

• Infimum of Supremums of Tails:

lim sup
n→∞

an = inf
n≥1

(
sup
k≥n

ak

)
.

• Eventually Upper Bounds: For every ϵ > 0, there exists an N such that for all n ≥ N ,

an ≤ lim sup
k→∞

ak + ϵ,

and there are infinitely many n for which

an ≥ lim sup
k→∞

ak − ϵ.

• Using Negation and Limit Inferior:

lim sup
n→∞

an = − lim inf
n→∞

(−an).

Definition (Alternative Definitions of Limit Inferior). Let (an) be a sequence of real numbers. The limit
inferior (lim inf) can be equivalently defined as:

• Infimum of Subsequence Limits:

lim inf
n→∞

an = inf

{
ℓ ∈ R

∣∣∣∣ there exists a subsequence (ank
) such that lim

k→∞
ank

= ℓ

}
.

• Supremum of Infimums of Tails:

lim inf
n→∞

an = sup
n≥1

(
inf
k≥n

ak

)
.

• Eventually Lower Bounds: For every ϵ > 0, there exists an N such that for all n ≥ N ,

an ≥ lim inf
k→∞

ak − ϵ,

and there are infinitely many n for which

an ≤ lim inf
k→∞

ak + ϵ.

• Using Negation and Limit Superior:

lim inf
n→∞

an = − lim sup
n→∞

(−an).
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4 Series

Definition. Let (an) be a sequence in R. For n ∈ N, define sn = a1 + a2 + · · ·+ an =
∑n

k=1 ak. The series∑∞
n=1 an is said to converge if the sequence of partial sums (sn) converges. A series that does not converge

is said to diverge.

Definition. A series
∑∞

n=1 an is said to converge absolutely if the series
∑∞

n=1 |an| converges. [Note that
the series

∑∞
n=1 |an| either converges or diverges to ∞.]

Theorem. The series
∑∞

n=1 an converges if and only if it satisfies the Cauchy criterion, i.e., for ∀ϵ > 0,
∃Nϵ ∈ N such that ∣∣∣∣∣

n+m∑
k=n

ak

∣∣∣∣∣ < ϵ for all n ≥ Nϵ and m ∈ N ∪ {0}.

Proof.
∑∞

n=1 an converges ⇐⇒ (sn) converges ⇐⇒ (sn) is Cauchy.

⇐⇒ ∀ϵ > 0,∃Ñϵ ∈ N such that |sm − sn| < ϵ for all m,n ≥ Ñϵ.

⇐⇒ ∀ϵ > 0,∃Ñϵ ∈ N such that
∣∣∣∑n+m

k=n ak

∣∣∣ < ϵ for all n ≥ Ñϵ,m ∈ N.
⇐⇒ ∀ϵ > 0,∃Ñϵ ∈ N such that |

∑∞
k=n ak| < ϵ for all n ≥ Ñϵ and m ∈ N ∪ {0}.

Corollary. If
∑∞

n=1 an converges, then limn→∞ an = 0.

Theorem (Comparison test). Let (an) be a series with an ≥ 0 for all n ∈ N.

1. If
∑∞

n=1 an converges and |bn| ≤ an for all n ∈ N, then
∑∞

n=1 bn converges.

2. If
∑∞

n=1 an = ∞ and bn ≥ an for all n ∈ N, then
∑∞

n=1 bn = ∞.

Proof. 1. This follows from the fact ∣∣∣∣∣
n+m∑
k=n

bk

∣∣∣∣∣ ≤
n+m∑
k=n

ak

and the Cauchy criterion.

2. Since an ≤ bn for all n ∈ N,
n∑

k=1

bk ≥
n∑

k=1

ak.

Since
∑n

k=1 ak → ∞ as n → ∞, we have
∑n

k=1 bk → ∞ as n → ∞.

Theorem (The root test). Let
∑∞

n=1 an be a series and let

α = lim sup
n→∞

|an|1/n.

Then the series
∑∞

n=1 an:

1. converges absolutely if α < 1,

2. diverges if α > 1,

12



3. has no conclusion if α = 1.

Proof. 1. Let ϵ > 0 be such that α+ ϵ < 1. Since

α = lim sup
n→∞

|an|1/n = inf
N

sup
n≥N

|an|1/n,

there exists Nϵ ∈ N such that
sup{|an|1/n : n ≥ Nϵ} < α+ ϵ.

This implies
|an| < (α+ ϵ)n for all n ≥ Nϵ.

Since
∑∞

n=1(α+ ϵ)n converges, we conclude that
∑∞

n=1 |an| converges.
2. There exists a subsequence (akn) of (an) such that limn→∞ |akn |1/kn = α > 1. This implies there

exists N ∈ N such that
|an|1/n > 1 for all n ≥ N,

which leads to
|an| > 1 for all n ≥ N.

This implies limn→∞ an ̸= 0 and the Cauchy criterion is not satisfied. Thus,
∑∞

n=1 an does not converge.

Theorem (The ratio test). Let
∑∞

n=1 an be a series with an ̸= 0 for all n ∈ N. Then
∑∞

n=1 an:

1. converges absolutely if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1,

2. diverges if lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1,

3. has no conclusion if lim infn→∞

∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim supn→∞

∣∣∣an+1

an

∣∣∣.
Proof. Recall that

lim inf
n→∞

|an|1/n ≤ lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Parts 1 and 2 follow from the root test. Part 3 uses the same counterexamples as in the root test.

Theorem (Abel’s criterion). Let (an) be a decreasing sequence with limn→∞ an = 0. Let (bn) be such that∑∞
k=1 bk is bounded. Then

∑∞
n=1 anbn converges.

Proof. Let tn =
∑n

k=1 bk. As (tn) is bounded, there exists M > 0 such that |tn| ≤ M for all n ∈ N.
For ϵ > 0, there exists Nϵ ∈ N such that |an| < ϵ

2M for all n ≥ Nϵ. Now,

n+m∑
k=n

akbk =

n+m∑
k=n

ak(tk − tk−1) =

n+m∑
k=n

(ak − ak+1)tk + an+m+1tn+m − antn−1.

This implies∣∣∣∣∣
n+m∑
k=n

akbk

∣∣∣∣∣ ≤ M(an − an+m+1) +Man+m+1 +Man < ϵ for all n ≥ Nϵ and m ∈ N ∪ {0}.

Corollary (Leibniz Criterion). If (an) is decreasing and limn→∞ an = 0, then
∑∞

n=1(−1)nan converges.

13



Theorem (The dyadic criterion). Let (an) be decreasing and an ≥ 0. Then
∑

an converges if and only if∑∞
n=0 2

na2n converges.

Proof. Let sn =
∑n

k=0 ak and tn =
∑n

k=0 2
ka2k . Then:

2na2n+1 ≤
2n+1−1∑
k=2n

ak ≤ 2na2n .

Using the fact that (an) is decreasing:

2n+1a2n+1 ≤ 2

∞∑
k=n

2ka2k .

This implies:
∞∑

k=n

2k+1a2k ≤ 2

∞∑
k=n

2kak.

Hence:
tn+1 − a1 ≤ s2n+1 and sn ≤ tn + a1.

Since (sn) converges if and only if (tn) converges, we conclude:∑
an converges if and only if

∞∑
n=0

2na2n converges.

Theorem (The Raab-Duhamel Criterion). Let
∑

an be a series with an > 0 ∀n ∈ N. Suppose that ∃n0 ∈ N
and q > 1 such that

n

(
an

an+1
− 1

)
≥ q ∀n ≥ n0.

Then the series
∑

n an converges.

Proof. Let q = 1 + ε for some ε > 0. Then

n

(
an

an+1
− 1

)
≥ q = 1 + ε

implies
nan − nan+1 ≥ an+1 + εan+1.

Rearranging, we have
nan ≥ (n+ 1)an+1 + εan+1 ∀n ≥ n0.

Thus,
n0an0

≥ (n+ 1)an+1 + εan+1 + (n+ 2)an+2 + εan+2 + · · ·

≥ (n+ p)an+p + ε

n+p∑
k=n+1

ak ∀n ∈ N.

This implies

an0+1 + · · ·+ an0+m ≤ n0an0

ε
∀n ∈ N.

Therefore, the partial sum of
∑∞

n=n0+1 an is bounded above by
n0an0

ε . Since an > 0 ∀n ∈ N, we conclude
that

∑
an converges.
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Continuity

Definition. Let f : I → R be a function, where I ⊂ R. We say that f is continuous at x0 ∈ I if for every
sequence {xn} ⊂ I with

lim
n→∞

xn = x0,

we have
lim
n→∞

f(xn) = f(x0).

If f is continuous at every point of a set S ⊂ I, then we say f is continuous on S. We say f is continuous
if it is continuous on I.

Theorem. Let I ⊂ R and f : I → R be a function. Then f is continuous at x0 ∈ I if and only if for all
ε > 0, there exists δ > 0 such that for all x ∈ I with |x− x0| < δ, we have

|f(x)− f(x0)| < ε.

Proof. (⇒) By contradiction: Assume ∃ ε0 > 0 such that ∀ δ0 > 0, ∃xδ ∈ I with |xδ − x0| < δ0 but
|f(xδ)− f(x0)| ≥ ε0.

Take δ = 1
n . Then we get a sequence {xn} ⊂ I with |xn − x0| < 1

n and |f(xn)− f(x0)| ≥ ε0. Now, since
|xn − x0| < 1

n , we have limn→∞ xn = x0.
Hence, by continuity at x0, we must have limn→∞ f(xn) = f(x0), which contradicts |f(xn) − f(x0)| ≥

ε0 ∀n ∈ N.

(⇐) Let {xn} be a sequence in I with limn→∞ xn = x0. We need to show limn→∞ f(xn) = f(x0).
Let ε > 0. Then ∃ δ > 0 such that x ∈ I and |x− x0| < δ implies |f(x)− f(x0)| < ε.
Since limn→∞ xn = x0, ∃n0 ∈ N such that |xn − x0| < δ for all n ≥ n0. Therefore, |f(xn) − f(x0)| < ε

for all n ≥ n0. Hence, limn→∞ f(xn) = f(x0).

Example. 1. f(x) = xn, n ≥ 1: It is easier to check with the ε-δ definition.

2. f(x) =

{
x cos

(
1
x

)
if x ̸= 0

0 if x = 0
: f is continuous at 0. Use the ε-δ method; |100x| ≤ x.

Theorem. Let f : I → R be continuous at x0 ∈ I. Then so are |f | and kf for any k ∈ R.

Proof. For |f |, use
||f(x)| − |f(x0)|| ≤ |f(x)− f(x0)|.

For kf , use
|kf(x)− kf(x0)| = |k||f(x)− f(x0)|.

Theorem. Let f and g be continuous at x0 ∈ I. Then:

1. f + g is continuous at x0.

2. fg is continuous at x0.

3. If g(x0) ̸= 0, then f
g is continuous at x0.
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Proof. Let {xn} ⊂ I be such that xn → x0. Then:

lim(f + g)(xn) = lim f(xn) + lim g(xn) = f(x0) + g(x0).

lim(fg)(xn) = lim f(xn) · lim g(xn) = f(x0)g(x0).

lim
f

g
(xn) =

lim f(xn)

lim g(xn)
=

f(x0)

g(x0)
.

Here we use the fact that g(x) ̸= 0 for sufficiently large n as a consequence of the fact that g(x0) ̸= 0 and g
is continuous at x0.

Theorem. If f : I → J is continuous at x0 ∈ I and g : J → K is continuous at f(x0) ∈ J , then g ◦ f is
continuous at x0.

Proof. Let ε > 0. As g is continuous at f(x0), ∃ δ > 0 such that

y ∈ J and |y − f(x0)| < δ =⇒ |g(y)− g(f(x0))| < ε. (*)

Since f is continuous at x0, ∃ η > 0 such that

x ∈ I and |x− x0| < η =⇒ |f(x)− f(x0)| < δ.

Thus, for x ∈ I with |x− x0| < η, we have |f(x)− f(x0)| < δ, and by (∗),

|g(f(x))− g(f(x0))| < ε.

Hence, g ◦ f is continuous at x0.

Definition. We say that f : I → R is bounded if f(I) = {f(x) : x ∈ I} is bounded in R, i.e., if ∃M ≥ 0
such that |f(x)| ≤ M ∀x ∈ I.

Theorem. Let f : [a, b] → R be continuous. Then f is bounded. Moreover, f attains its supremum and
infimum values in [a, b], i.e., ∃x1, x2 ∈ [a, b] such that

f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ [a, b].

Proof. “f is bounded”: By contradiction, assume f is not bounded. Then for each n ∈ N, ∃xn ∈ [a, b]
such that |f(xn)| > n, which implies lim|f(xn)| = ∞.

But xn ∈ [a, b] =⇒ {xn} is bounded =⇒ {xn} has a convergent subsequence {xnk
} converging to

x0 ∈ R. Since a ≤ xnk
≤ b, x0 ∈ [a, b].

By continuity of f on [a, b], we have f(xnk
) → f(x0), and hence |f(xnk

)| → |f(x0)|. This contradicts
lim|f(xn)| = ∞.

Now let M = sup{f(x) : x ∈ [a, b]}. Then M < ∞ as f is bounded. For n ∈ N, ∃ yn ∈ [a, b] such that

M − 1

n
< f(yn) ≤ M.

Hence,
lim f(yn) = M.
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Since {yn} is bounded, by Bolzano-Weierstrass, ∃ a convergent subsequence {ynk
} of {yn} converging to

y0 ∈ [a, b]. Since f is continuous at y0, we get

f(y0) = lim f(ynk
) = M.

The argument is similar for the infimum.

Remark. 1. f(x) = x is continuous on (0, 1) but does not attain its supremum or infimum.

2. f(x) = 1
x is continuous on (0, 1) but unbounded on (0, 1).

Theorem (Intermediate Value Theorem). Let I be an interval, and f : I → R be continuous. Then f has
the intermediate value property: if a, b ∈ I, a < b, and y lies between f(a) and f(b), then ∃x ∈ (a, b) such
that f(x) = y.

Proof. Without loss of generality, assume that f(a) < f(b) (otherwise work with −f). Let f(a) < y < f(b),
and set

A = {x ∈ [a, b] : f(x) < y}.

Then a ∈ A, and A is bounded. Let x0 = supA. We want to check that f(x0) = y.

Claim 1: f(x0) ≤ y.
Since x0 = supA, for n ∈ N, ∃xn ∈ A such that x0 − 1

n < xn ≤ x0. Thus, limxn = x0 =⇒ lim f(xn) =
f(x0). Since f(xn) ≤ y for all n ∈ N, we have f(x0) ≤ y.

Claim 2: y ≤ f(x0).
Let an = min{x0 +

1
n , b}. Then x0 < an ≤ x0 +

1
n for large n. By Claim 1, lim an = x0 =⇒ lim f(an) =

f(x0). Also, f(an) > y for all n ∈ N, so f(x0) ≥ y.

Combining Claim 1 and Claim 2, we conclude that f(x0) = y.

Corollary. Let I be an interval, and f : I → R be continuous. Then f(I) is also an interval (or a singleton).

Proof. As f is continuous, J = f(I) has the property that if y1, y2 ∈ J with y1 < y2, then (y1, y2) ⊆ J .
Case 1: sup J = inf J =⇒ f(I) is a singleton set.
Case 2: sup J > inf J .
Let inf J < y < sup J . We want to show y ∈ J , which implies J is an interval with endpoints inf J and

sup J (which may or may not be in J).
Since inf J < y, ∃ y1 ∈ J such that inf J ≤ y1 < y. Similarly, since supJ > y, ∃ y2 ∈ J such that

y < y2 ≤ sup J .
Thus, y1 < y < y2, and y1, y2 ∈ J . By the intermediate value property, y ∈ J .
Therefore, J is an interval (or a singleton).

Theorem. Let I be an interval and f : I → R be strictly increasing such that f(I) is an interval. Then f
is continuous.

Proof. Let x0 ∈ I \ {inf I, sup I}. As f is strictly increasing, f(x) is not an endpoint of f(I), which is an
interval. So, ∃ ε > 0 such that

[f(x0)− ε, f(x0) + ε] ⊆ f(I).

Let ε > 0. Since [f(x0)− ε, f(x0) + ε] ⊆ f(I), ∃x1, x2 ∈ I such that

f(x1) = f(x0)− ε and f(x2) = f(x0) + ε, with x1 < x0 < x2.

17



For x ∈ (x1, x2), we have f(x1) < f(x) < f(x2) =⇒ |f(x)− f(x0)| < ε. Let δ = min{x2 − x0, x0 − x1},
and conclude that f is continuous.

Now assume x0 = inf I > −∞. Then f(x0) = inf f(I). Let ε > 0 small enough such that [f(x0), f(x0) +
ε] ⊆ f(I). Then for z ∈ (0, ε), ∃x ∈ I such that f(x) = f(x0) + z.

As f is increasing, we have x0 < x2, and for all x ∈ (x0, x2), we have

f(x0) < f(x) < f(x2) =⇒ |f(x)− f(x0)| < ε.

Choose δ = |x1 − x2|.

Corollary. Let I be an interval, and f : I → R be continuous and strictly increasing. Then f(I) is an
interval. Let f−1 : f(I) → I be the inverse of f . Then f−1 is continuous and strictly increasing.

Proof. Since f is continuous and strictly increasing on an interval, by a previous corollary, f(I) is an interval.
Since f is strictly increasing, it is one-to-one on I, and hence f−1 is well-defined.

In view of the previous theorem, it is enough to check that f−1 is strictly increasing.
Let y1, y2 ∈ f(I) with y1 < y2. Then ∃! (unique) x1, x2 ∈ I such that f(x1) = y1 and f(x2) = y2. Since

f is strictly increasing, we get x1 < x2 =⇒ f−1(y1) < f−1(y2).
Thus, f−1 is strictly increasing.

Theorem. Let f be injective and continuous on an interval I. Then f is strictly increasing or strictly
decreasing.

Proof. Claim 1: Let a, b, c ∈ I with a < b < c. Then f(b) lies between f(a) and f(c).
Proof of Claim 1: Assume not, and let max{f(a), f(c)} < f(b). Let

max{f(a), f(c)} < y < f(b).

Then by the intermediate value theorem, ∃x1 ∈ (a, b) and x2 ∈ (b, c) such that

f(x1) = y and f(x2) = y,

which is a contradiction to the fact that f is injective.

Let a, b, c ∈ I and f(a) < f(b). We show below that for any x1, x2 ∈ I with x1 < x2, we have
f(x1) < f(x2).

Claim 2: If f(x) < f(a) < f(c) for x ∈ (a, c), then:

1. f(x) > f(a) for x > a.

2. f(x) < f(c) for x < c.

Proof of Claim 2: Since x < a < c, we have f(x) must lie between f(a) and f(c).
As f(c) > f(a), we have f(x) < f(c). For x < c, we have either:

x < a =⇒ f(x) lies between f(a), f(c), or x > b =⇒ f(x) > f(a).

Combining these, f is strictly increasing or strictly decreasing.

Let y1, y2 ∈ f(I), and suppose y1 < y2. Then:

1. If f is strictly increasing, f−1(y1) < f−1(y2).

2. If f is strictly decreasing, f−1(y1) > f−1(y2).

Thus, f must be monotone.
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