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1 Preliminaries

Definition (Metric). Let X be a set. A function d : X×X → R is called a metric if it satisfies the following
properties for all x, y, z ∈ X:

(i) d(x, x) = 0;

(ii) d(x, y) > 0 if x ̸= y;

(iii) d(x, y) = d(y, x);

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition (Metric Space). The pair (X, d) is called a metric space.

Definition (Taxicab Metric). The taxicab metric on Rn is defined as:

dtaxi((x1, . . . , xn), (y1, . . . , yn)) =

n∑
i=1

|xi − yi|.

This is a metric.

Definition (Discrete Metric). Let X be a non-empty set. The discrete metric on X is defined as:

ddisc(x, y) =

{
0, if x = y,

1, otherwise.

Definition (Euclidean Metric on R). The Euclidean metric on R is defined as:

d(x, y) = |x− y|,

where x, y ∈ R.

Definition (Euclidean Metric on Rn). The Euclidean metric (or ℓ2-metric) on Rn is defined as:

dEuclidean(x⃗, y⃗) =

(
n∑

i=1

(xi − yi)
2

) 1
2

,

where x⃗, y⃗ ∈ Rn.
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Definition (Convergence of a Sequence in a Metric Space). Let (X, d) be a metric space. Let (xn)
∞
n=1 be a

sequence in X. We say that (xn)
∞
n=1 converges to x0 ∈ X (denoted xn → x0) if, for every ϵ > 0, there exists

N ∈ N such that for all n ≥ N ,
d(xn, x0) < ϵ.

Remark. The condition d(xn, x0) < ϵ is equivalent to |d(xn, x0)− 0| < ϵ.
Thus, xn → x0 if and only if

lim
n→∞

d(xn, x0) = 0.

Proposition. Let (xn)
∞
n=1 be a sequence in some discrete metric space (X, ddisc).

If (xn)
∞
n=1 converges, then the sequence is eventually constant.

Proposition. Let (x(k))∞k=1 be a sequence in Rn, where each x(k) = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ).

With the standard Euclidean metric, the sequence (x(k))∞k=1 converges to x = (x1, x2, . . . , xn) ∈ Rn if

and only if each component sequence (x
(k)
i )∞k=1 converges to xi in R for all i = 1, 2, . . . , n.

Remark. If (xn)
∞
n=1 is eventually constant, then it converges in any metric space.

Proposition (Uniqueness of Limits). Limits of sequences are unique.
Let (xn)

∞
n=1 be a sequence in a metric space (X, d). Suppose xn → x ∈ X and xn → y ∈ X. Then x = y.

2 Point Set Topology

Definition. Let (X, d) be a metric space. Let x0 ∈ X and r ∈ R>0. We define the ball centered at x0 with
radius r as

B(x0, r) = {x ∈ X | d(x, x0) < r}.

Definition. Let (X, d) be a metric space. Let U ⊆ X. We say that U is open if

∀x ∈ U,∃r > 0 such that B(x, r) ⊆ U,

where B(x, r) denotes the ball centered at x with radius r.

Definition. Let (X, d) be a metric space, and let E ⊆ X.

(i) A point x0 ∈ X is an interior point of E if ∃r > 0 such that B(x0, r) ⊆ E.

(ii) A point x0 ∈ X is an exterior point of E if ∃r > 0 such that B(x0, r) ∩ E = ∅.
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(iii) A point x0 ∈ X is a boundary point of E if it is neither an interior point nor an exterior point of E.

(iv) A point x0 ∈ X is an adherent point of E if ∀r > 0, B(x0, r) ∩ E ̸= ∅.

Let E ⊆ X be a subset of a metric space (X, d). We use the following notations:

• int(E) := {interior points of E}

• ext(E) := {exterior points of E}

• ∂E := {boundary points of E}

• E := {adherent points of E} (closure of E).

Definition. Let (X, d) be a metric space, and let E ⊆ X. We say that E is closed if it contains all of its
adherent points, i.e.,

E ⊆ E.

Remark. Let E ⊆ X, where (X, d) is a metric space. The following hold:

(i) int(E) ⊆ E, with equality if and only if E is open.

(ii) E ⊆ E, with equality if and only if E is closed.

(iii) ext(E) ∩ E = ∅, where ext(E) denotes the set of exterior points of E.

(iv) E is closed if and only if E ⊆ E.

Proposition. Let (X, d) be a metric space. Let x0 ∈ X and R > 0. Then, the ball B(x0, R) is open.

Fact. Let (X, d) be a metric space.

(i) ∅ is open and closed.

(ii) X is open and closed.

(iii) If {Ui}i∈I is a collection of open sets, then
⋃

i∈I Ui is open. (Countable?)

(iv) If {Fi}i∈I is a collection of closed sets, then
⋂

i∈I Fi is closed.

(v) If U, V are open, then U ∪ V is open.

• By induction, finite unions of open sets are open.

(vi) If E,F are closed, then their finite union E ∪ F is closed.

(vii) int(E) is always open.

(viii) E is always closed.

Definition (Subspaces (1.3)). If (X, d) is a metric space and Y ⊆ X, then (Y, d|Y ) is a metric space as well,
obtained by restricting d to points of Y .
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Definition (Relative Openness and Closedness). Let (X, d) be a metric space, Y ⊆ X, and E ⊆ Y .

• E is called relatively open in Y if E is open in (Y, d).

• E is called relatively closed in Y if E is closed in (Y, d).

Definition (Subballs).
BX(x0, r) := {x ∈ X | d(x0, x) < r}

BY (y0, r) := {y ∈ Y | d(y0, y) < r}

Since Y ⊆ X, it follows that:
BY (y0, r) = BX(x0, r) ∩ Y.

Not formal name for these balls

Example. Consider (R, dstd) and Y = [0,∞). We claim [0, 1) is relatively open in Y . Another way to see
this is to note that [0, 1) = BY (0, 1), and we have shown that all balls are open.

Proposition. Let (X, d) be a metric space, Y ⊆ X, and E ⊆ Y . Then:

(i) E is relatively open in Y if and only if there exists E′ ⊆ X open such that E = E′ ∩ Y .

(ii) E is relatively closed in Y if and only if there exists E′ ⊆ X closed such that E = E′ ∩ Y .

Definition (Cauchy Sequence). Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X is called a Cauchy

sequence if
∀ϵ > 0,∃N ∈ N, such that n,m ≥ N =⇒ d(xn, xm) < ϵ.

Proposition. Let (X, d) be a metric space, and E ⊆ X. Then E is closed if and only if X \ E is open.

Proof. (⇒) Suppose E is closed. Then E = E.
We want to show that if x0 ∈ X \ E, then x0 ∈ int(X \ E). Let x0 ∈ X \ E. Since E = E, x0 /∈ E.

This means x0 is not adjacent to E, so x0 is in the exterior of E. Therefore, there exists r0 > 0 such that
B(x0, r) ∩ E = ∅. This implies B(x0, r) ⊆ X \ E, so x0 ∈ int(X \ E).

(⇐) Assume X \ E is open. Thus, X \ E = int(X \ E).
We want to show that x0 ∈ E =⇒ x0 ∈ E. Let x0 ∈ E. Then, for all r > 0, B(x0, r) ∩ E ̸= ∅.

Equivalently, for all r > 0, B(x0, r) ̸⊆ X \E. Hence, x0 /∈ int(X \E), which implies x0 /∈ X \E. Therefore,
x0 ∈ E, and so E ⊆ E. Thus, E is closed.

Example (Open/Closed Discrete Metric Space). Let (X, ddisc) be a discrete metric space, and let E ⊆ X.
Then:

Claim: E is open.

Proof. Let x0 ∈ E. Choose r = 1. Then,

B(x0, 1) = {x ∈ X | ddisc(x, x0) < 1} = {x0} ⊆ E.

Therefore, E is open.
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=⇒ Every subset of a discrete metric space is open!

In particular, X \ E is open, which implies E is closed.

=⇒ Every subset of a discrete metric space is both open and closed.

Definition (Subsequences). Let (xn)
∞
n=m be a sequence of points in a metric space (X, d). Suppose that

n1, n2, n3, . . . is an increasing sequence of integers such that nj ≥ m for all j, satisfying:

m ≤ n1 < n2 < n3 < · · · .

Then the sequence (xnj
)∞j=1 is called a subsequence of the original sequence (xn)

∞
n=m.

Theorem. Let (xn)
∞
n=m be a sequence in a metric space (X, d) that converges to some limit x0. Then every

subsequence (xnj )
∞
j=1 of that sequence also converges to x0.

Definition (Limit Points). Suppose that (xn)
∞
n=m is a sequence of points in a metric space (X, d), and let

L ∈ X. We say that L is a limit point of (xn)
∞
n=m if and only if for every N ≥ m and ϵ > 0, there exists an

n ≥ N such that d(xn, L) ≤ ϵ.

Definition (Cauchy Sequence). Let (xn)
∞
n=m be a sequence of points in a metric space (X, d). We say

that this sequence is a Cauchy sequence if and only if for every ϵ > 0, there exists an N ≥ m such that
d(xj , xk) < ϵ for all j, k ≥ N .

Lemma (Convergent Sequences are Cauchy Sequences). Let (xn)
∞
n=m be a sequence in (X, d) which con-

verges to some limit x0. Then (xn)
∞
n=m is also a Cauchy sequence.

Definition (Complete Metric Space). A metric space (X, d) is said to be complete if and only if every
Cauchy sequence in (X, d) is convergent in (X, d).

Proposition (1.4.12). This proposition states that

(a) Let (X, d) be a metric space, and let (Y, d|Y×Y ) be a subspace of (X, d). If (Y, d|Y×Y ) is complete,
then Y must be closed in X.

(b) Conversely, suppose that (X, d) is a complete metric space, and Y is a closed subset of X. Then the
subspace (Y, d|Y×Y ) is also complete.

Definition (Open Cover). Let (X, d) be a metric space and E ⊆ X. A collection {Ui}i∈I of open sets is
called an open cover of E if

E ⊆
⋃
i∈I

Ui.
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Definition (Compact Set). Let (X, d) be a metric space, and let E ⊆ X. Then, E is said to be compact if
every open cover of E admits a finite subcover. That is, for every collection of open sets {Ui}i∈I such that

E ⊆
⋃
i∈I

Ui,

there exists a finite subset {i1, . . . , in} ⊆ I such that

E ⊆
n⋃

j=1

Uij .

Definition (Bounded Set). Let (X, d) be a metric space, and let E ⊆ X. We say that E is bounded if there
exists a point x0 ∈ X and a real number R > 0 such that

E ⊆ B(x0, R),

where B(x0, R) = {x ∈ X : d(x, x0) < R} is the open ball of radius R centered at x0.

Remark. In fact, finite sets are always compact in any metric space (X, d).

Remark (Differences between Limit Points and Adherent Points). The key differences between limit points
and adherent points are:

1. Includes the Point: A limit point does not include the point itself unless it is approached by other
points in the set. An adherent point always includes the point if it belongs to the set.

2. Neighborhood Condition: A limit point requires every neighborhood to contain another distinct
point of the set. An adherent point requires every neighborhood to contain at least one point of the
set, including itself.

3. Relation to Closure: All limit points are in the closure, but adherent points form the entire closure,
including the set itself.

Proposition. Let (X, d) be a metric space and E ⊆ X. If E is compact, then E must be closed and
bounded.

Proof. We first show that E is bounded. Suppose E is compact. Pick any x0 ∈ X. Note that

E ⊆
⋃
n∈N

B(x0, n),

where B(x0, n) denotes the open ball of radius n centered at x0. The collection of all such balls forms an
open cover of E.

By the compactness of E, there exist finitely many indices n1, . . . , nk ∈ N such that

E ⊆
k⋃

j=1

B(x0, nj).

Let N = max{n1, . . . , nk}. Then E ⊆ B(x0, N), so E is bounded.
Hence, E is bounded as desired.
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Definition (Sequential Compactness). Let (X, d) be a metric space and E ⊆ X. We say E is sequentially
compact if every sequence (xn)

∞
n=1 ⊆ E has a subsequence (xnk

)∞k=1 that converges to some x ∈ E.

Theorem (Bolzano-Weierstrass). If (xn)
∞
n=1 is a bounded sequence in (R, dstd), then there exists a subse-

quence that converges to some real number.

Theorem (Heine-Borel). Let E ⊆ (Rn, dstd). If E is closed and bounded, then E is sequentially compact.

Proposition. Let (X, d) be a metric space and E ⊆ X. If E is compact, then E must be closed and
bounded.

Proof. We first show that E is bounded. Suppose E is compact. Pick any x0 ∈ X. Note that

E ⊆
⋃
n∈N

B(x0, n),

where B(x0, n) denotes the open ball of radius n centered at x0. The collection of all such balls forms an
open cover of E.

By the compactness of E, there exist finitely many indices n1, . . . , nk ∈ N such that

E ⊆
k⋃

j=1

B(x0, nj).

Let N = max{n1, . . . , nk}. Then E ⊆ B(x0, N), so E is bounded.
Hence, E is bounded as desired.
Suppose E is compact in (X, d) and let x ∈ X\E. We claim x is not an adherent point of E. Equivalently,

if x were an adherent point, then every ball B(x, r) meets E.
Construct the open cover

{X \ {x}} ∪ {B(e, 1
n ) : e ∈ E, n ∈ N}

of X. Since E is compact, it suffices to show E must lie entirely in a finite subcover disjoint from x. By
refining or adjusting the open sets, one shows no cluster can form at x unless x ∈ E. (Alternatively, a
standard argument uses sequences or adherent points: in a metric space, E is closed iff every convergent
sequence in E has its limit in E. If x /∈ E were a limit of points of E, that would contradict the compactness
or lead to x ∈ E.) Thus E contains all its limit (adherent) points, i.e. E is closed.

Definition (Sequential Compactness). Let (X, d) be a metric space and E ⊆ X. We say E is sequentially
compact if every sequence (xn)

∞
n=1 ⊆ E has a subsequence (xnk

)∞k=1 that converges to some x ∈ E.

3 Continuity

Definition (Continuity in Metric Spaces). Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is continuous at x0 ∈ X if for every ϵ > 0, there exists δ > 0 such that:

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ϵ.
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Proposition. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous if for every
open subset V ⊆ Y , the preimage f−1(V ) is open in X.

Proposition. Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces. Suppose f : X → Y and g : Y → Z are
functions. If f is continuous at x0 ∈ X, and g is continuous at f(x0), then the composition g ◦ f : X → Z is
continuous at x0.

Theorem. Let (X, dX) be a metric space, and let (Y, dY ) be another metric space. Let f : X → Y be a
function. Then the following statements are equivalent:

(a) f is continuous.

(b) Whenever (x(n))∞n=1 is a sequence in X that converges to some point x0 ∈ X with respect to the metric
dX , the sequence (f(x(n)))∞n=1 converges to f(x0) with respect to the metric dY .

(c) Whenever V is an open set in Y , the set f−1(V ) := {x ∈ X : f(x) ∈ V } is an open set in X.

(d) Whenever F is a closed set in Y , the set f−1(F ) := {x ∈ X : f(x) ∈ F} is a closed set in X.

Corollary (Continuity Preserved by Composition). Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces.

(a) If f : X → Y is continuous at a point x0 ∈ X, and g : Y → Z is continuous at f(x0), then the
composition g ◦ f : X → Z, defined by (g ◦ f)(x) := g(f(x)), is continuous at x0.

(b) If f : X → Y is continuous, and g : Y → Z is continuous, then g ◦ f : X → Z is also continuous.

Corollary. Let (X, d) be a metric space, and let f : X → R and g : X → R be functions. Let c be a real
number.

(a) If x0 ∈ X and f and g are continuous at x0, then the functions

f + g : X → R, f − g : X → R, max(f, g) : X → R, min(f, g) : X → R, and cf : X → R

are also continuous at x0. If g(x) ̸= 0 for all x ∈ X, then f/g : X → R is also continuous at x0.

(b) If f and g are continuous, then the functions

f + g : X → R, f − g : X → R, max(f, g) : X → R, min(f, g) : X → R, and cf : X → R

are also continuous on X. If g(x) ̸= 0 for all x ∈ X, then f/g : X → R is also continuous on X.

Example. • We know that f(x) = x is continuous. This implies that all polynomials are continuous.

• We also know that f(x, y) = x and g(x, y) = y are continuous. Thus, all multivariate polynomials,
such as x2y + 2y3, are continuous.

Theorem (Continuous Maps Preserve Compactness). Let f : X → Y be a continuous map from one metric
space (X, dX) to another (Y, dY ). Let K ⊆ X be any compact subset of X. Then the image

f(K) := {f(x) : x ∈ K}

of K is also compact.
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Proposition (Maximum Principle). Let (X, d) be a compact metric space, and let f : X → R be a
continuous function. Then f is bounded. Furthermore, if X is non-empty, then f attains its maximum at
some point xmax ∈ X and also attains its minimum at some point xmin ∈ X.

Definition (Uniform Continuity). Let f : X → Y be a map from one metric space (X, dX) to another
(Y, dY ). We say that f is uniformly continuous if, for every ϵ > 0, there exists a δ > 0 such that:

dY (f(x), f(x
′)) < ϵ whenever x, x′ ∈ X and dX(x, x′) < δ.

Every uniformly continuous function is continuous, but not conversely. However, if the domain X is compact,
then the two notions are equivalent.

Theorem. Let (X, dX) and (Y, dY ) be metric spaces, and suppose that (X, dX) is compact. If f : X → Y
is a function, then f is continuous if and only if it is uniformly continuous.

Definition (Disconnected and Connected Sets). Let (X, d) be a metric space, and let E ⊆ X.

• E is disconnected if there exist U, V ⊆ E, non-empty, relatively open subsets (with respect to E), such
that:

E = U ∪ V and U ∩ V = ∅.

• E is connected if it is not disconnected.

Example. • Consider (R, dstd) and let E = {0, 1}. Then E is disconnected. Define U = {0} and
V = {1}. We have:

E = U ∪ V and U ∩ V = ∅.

• Let F = R \ {0}. Then F is also disconnected. Define U = (−∞, 0) and V = (0,∞), which are open
in R and thus relatively open in F . Both U and V are non-empty, and:

F = U ∪ V and U ∩ V = ∅.

Theorem. Let X be a non-empty subset of the real line R. Then the following statements are equivalent:

(a) X is connected.

(b) Whenever x, y ∈ X and x < y, the interval [x, y] is also contained in X.

(c) X is an interval (in the sense of Definition 9.1.1).

Theorem (Continuity Preserves Connectedness). Let f : X → Y be a continuous map from one metric
space (X, dX) to another (Y, dY ). Let E be any connected subset of X. Then f(E) is also connected.

Corollary (Intermediate Value Theorem). Let f : X → R be a continuous map from one metric space
(X, dX) to the real line. Let E be any connected subset of X, and let a, b be any two elements of E. Let y
be a real number between f(a) and f(b), i.e., either f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists
c ∈ E such that f(c) = y.
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Definition. Let (X, dX) and (Y, dY ) be metric spaces. Suppose for each n ∈ N, we have a function
fn : X → Y . We say that the sequence (fn)

∞
n=1 converges pointwise to some function f : X → Y if

∀x ∈ X, fn(x) → f(x) (in Y ).

Definition. Let (X, dX) and (Y, dY ) be metric spaces. Suppose (fn)
∞
n=1 is a sequence of functions. We say

that (fn)
∞
n=1 converges uniformly to some function f : X → Y if

∀ε > 0, ∃N ∈ N such that ∀x ∈ X,∀n ≥ N, dY (fn(x), f(x)) < ε.

Theorem. Let (X, dX) and (Y, dY ) be metric spaces, and let fn : X → Y be a sequence of functions that
converge uniformly to some function f : X → Y .

If each fn is continuous at x0 ∈ X, then f will also be continuous at x0.

Remark. If fn → f uniformly, then fn → f pointwise.

Proposition. Let (X, dX) and (Y, dY ) be metric spaces, and let fn : X → Y be a sequence of functions
that converge uniformly to some function f : X → Y .

If each fn is bounded, then f will also be bounded.

Remark. A function f is bounded if and only if f(x) is bounded.

Definition. The ℓ∞ metric (sup-norm metric) on B(X → Y ) is defined as

d∞(f, g) := sup
x∈X

dY (f(x), g(x)).

Proposition. This is a well-defined metric on B(X → Y ).

Proposition. Let (fn)
∞
n=1 be a sequence in (B(X → Y ), d∞). Then,

fn → f with respect to d∞ ⇐⇒ (fn) converges uniformly.

Fact. The space of continuous functions C(X → Y ) is a closed subset of (B(X → Y ), d∞).
That is, if fn → f in d∞ and fn ∈ C(X → Y ) for all n, then f ∈ C(X → Y ). Hence, C(X → Y ) is closed

in B(X → Y ).

Theorem. Let (X, dX) and (Y, dY ) be metric spaces. If (Y, dY ) is complete, then the space of bounded
functions (B(X → Y ), d∞) is also complete.
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Definition. Let fn : (X, d) → (R, dstd) be a sequence of R-valued functions. The symbol

∞∑
n=1

fn

denotes the corresponding series. This represents a sequence of partial sums, where the N -th partial sum is
given by

SN =

N∑
n=1

fn.

Each partial sum SN is also an R-valued function.

Definition (Convergence of series of functions). Let fn : (X, d) → (R, dstd) be a sequence of functions.
Define the function f by

f =

∞∑
n=1

fn.

We say that the series
∑∞

n=1 fn:

• Converges pointwise to f if the sequence of partial sums

PN =

N∑
n=1

fn

converges pointwise to f .

• Converges uniformly to f if the sequence of partial sums (PN )∞N=1 converges uniformly to f .

In either case, we may write

f =

∞∑
n=1

fn.

Example. Consider the sequence of functions fn : (−1, 1) → R defined by:

fn(x) = xn, (n ≥ 0).

The corresponding partial sum of the geometric series is given by:

Pn(x) = 1 + x+ x2 + · · ·+ xn.

Using the formula for the sum of a geometric series, we obtain:

Pn(x) =
1− xn+1

1− x
, x ̸= 1.

As n → ∞, we observe that:

Pn(x) →
1

1− x
, for |x| < 1.

Hence, the infinite geometric series:
∞∑

n=0

xn

converges pointwise to:
1

1− x
, for |x| < 1.

11



Definition (Supremum Norm). Let f : (X, dX) → (Y, dY ) be a bounded function. The supremum norm
(or sup-norm) of f is defined as:

∥f∥∞ = sup{|f(x)| : x ∈ X}.

Remark. The supremum norm induces a metric on the space of bounded functions B(X → Y ), given by:

d∞(f, g) = ∥f − g∥∞, for f, g ∈ B(X → Y ).

Theorem (Weierstrass M-test). Let (X, d) be a metric space, and let (fn)n≥1 be a sequence in C(X → R).
If the series

∞∑
n=1

∥fn∥∞

converges, then the series
∞∑

n=1

fn

converges uniformly to some function f ∈ C(X → R).

Proof. Define Mn = ∥fn∥∞. Then for all n and for all x ∈ X, we have:

|fn(x)| ≤ Mn.

Consider the partial sums Pn =
∑n

i=1 fi. For n ≥ m, we estimate the sup-norm distance:

d∞(Pn, Pm) = ∥Pn − Pm∥∞.

Expanding the definition,

∥Pn − Pm∥∞ =

∥∥∥∥∥
n∑

i=m+1

fi

∥∥∥∥∥
∞

.

By the triangle inequality, ∣∣∣∣∣
n∑

i=m+1

fi(x)

∣∣∣∣∣ ≤
n∑

i=m+1

|fi(x)| ≤
n∑

i=m+1

Mi.

Thus, taking the supremum over x ∈ X, ∥∥∥∥∥
n∑

i=m+1

fi

∥∥∥∥∥
∞

≤
n∑

i=m+1

Mi.

Since
∑

Mi converges, for any ε > 0, there exists an index N such that for all n,m ≥ N ,

n∑
i=m+1

Mi < ε.

This shows that (Pn)n≥1 is Cauchy in C(X → R).
By a previous theorem, since (R, dsup) is complete, the space C(X → R) is also complete. Therefore,

there exists a function f ∈ C(X → R) such that:

Pn → f uniformly.

12



4 Uniform Convergence and Integrals and Differentiation

Definition (Integrability via Upper and Lower Integrals). Let f : [a, b] → R be a bounded function. We
define the lower integral and upper integral as:

L(f) = sup

∫
[a,b]

f, U(f) = inf

∫
[a,b]

f.

The function f is said to be integrable if:

L(f) = U(f).

In this case, the integral of f is given by:∫ b

a

f =

∫
[a,b]

f = U(f) = L(f).

Theorem. Let (fn)n≥1 be a sequence of integrable functions fn : [a, b] → R. If fn → f uniformly for some
real-valued function f , then f is also integrable, and moreover,∫ b

a

f = lim
n→∞

∫ b

a

fn.

Definition (Continuously Differentiable Function). Let f : [a, b] → R. We say that f is continuously
differentiable (or C1) if it is differentiable and its derivative f ′ is continuous. That is, f ∈ C1([a, b] → R) if:

f ′ ∈ C([a, b] → R).

Theorem. Let (fn)n≥1 be a sequence of C1 functions on [a, b]. Suppose that f ′
n converges uniformly to

some function g : [a, b] → R. Further, suppose that there exists some x0 ∈ [a, b] such that:

lim
n→∞

fn(x0) exists.

Then, the sequence (fn)n≥1 converges uniformly to a differentiable function f , and:

f ′ = g.

Informally, this result states that if the derivatives f ′
n converge uniformly, and the sequence fn(x0)

converges for some x0, then fn itself converges uniformly, and:

d

dx
lim

n→∞
fn(x) = lim

n→∞

d

dx
fn(x).

Question: If fn → f uniformly, does it follow that f ′
n → f ′ (assuming fn is differentiable and f is

differentiable)?
Answer: Not necessarily.

13



Example. Consider the sequence of functions:

fn(x) =

√
x2 +

1

n2
.

Each fn is differentiable, and we observe that:

fn(x) → |x| uniformly.

However, |x| is not differentiable at x = 0. Thus, uniform convergence does not imply convergence of
derivatives.

Example. Consider the sequence:

fn(x) =
sin(nx)√

n
.

We observe that:
fn(x) → 0 uniformly.

However, differentiating fn, we get:
f ′
n(x) =

√
n cos(nx).

Evaluating at x = 0, we see:
f ′
n(0) =

√
n ̸→ 0.

Thus, even if fn → f uniformly, the derivatives f ′
n may not converge to f ′.

Theorem (Theorem 3.6.1). Let [a, b] be an interval, and for each integer n ≥ 1, let fn : [a, b] → R be a
Riemann-integrable function. Suppose fn converges uniformly on [a, b] to a function f : [a, b] → R. Then f
is also Riemann-integrable, and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Corollary (Corollary 3.6.2). Let [a, b] be an interval, and let (fn)
∞
n=1 be a sequence of uniformly Riemann-

integrable functions on [a, b] such that the series
∑∞

n=1 fn is uniformly convergent. Then,∫ b

a

∞∑
n=1

fn =
∞∑

n=1

∫ b

a

fn.

Corollary (Corollary 3.7.3). Let [a, b] be an interval, and for every integer n ≥ 1, let fn : [a, b] → R be a
differentiable function whose derivative f ′

n : [a, b] → R is continuous. Suppose that the series

∞∑
n=1

∥f ′
n∥

is absolutely convergent, where
∥f ′

n∥ := sup
x∈[a,b]

|f ′
n(x)|

is the sup-norm of f ′
n, as defined in Definition 3.5.5. Suppose also that the series

∞∑
n=1

fn(x0)

14



is convergent for some x0 ∈ [a, b]. Then the series
∑∞

n=1 fn(x) converges uniformly on [a, b] to a differentiable
function, and in fact,

d

dx

∞∑
n=1

fn(x) =

∞∑
n=1

d

dx
fn(x).

5 Power Series

Definition (Power Series). Let a ∈ R. A power series centered at a is a series of the form:

∞∑
n=0

cn(x− a)n,

where cn ∈ R are the coefficients of the series.

Example. The following is an example of a power series:

∞∑
n=0

n!(x− 2)n.

Example ((Non-example)). The following is not a power series:

∞∑
n=0

2x(x− 3)n.

This is because the coefficients cn = 2x depend on x, violating the definition of a power series.

Definition (Radius of Convergence). Let

∞∑
n=0

cn(x− a)n

be a power series. Define:
ρ = lim sup

n→∞
|cn|1/n.

The radius of convergence of this series is given by:

R =


0 if ρ = +∞,

+∞ if ρ = 0,
1
ρ otherwise.

Theorem (Root Test). Let
∑

an be a series of real numbers. Define:

α = lim sup |an|1/n.

Then:

15



• If α < 1, then
∑

an converges absolutely.

• If α > 1, then
∑

an diverges.

• If α = 1, the test is inconclusive.

Theorem. Let
∑

cn(x− a)n be a power series with radius of convergence R. Let x0 ∈ R. Then:

1. If |x0 − a| > R, then
∑

cn(x0 − a)n diverges.

2. If |x0 − a| < R, then
∑

cn(x0 − a)n converges absolutely.

Moreover, if R > 0 and 0 < r < R, then:

1.
∑

cn(x−a)n converges uniformly on [a−r, a+r], so that
∑

cn(x−a)n is continuous on (a−R, a+R).

2.
∑

cn(x− a)n is differentiable on (a−R, a+R) with derivative
∑

ncn(x− a)n−1, which also converges
uniformly on [a− r, a+ r].

3. If a−R ≤ y < z ≤ a+R, then:∫ z

y

∑
cn(x− a)n =

∑
cn

(z − a)n+1 − (y − a)n+1

n+ 1
.

Definition (Real Analytic Function). Let E ⊆ R and f : E → R. We say that f is real analytic or analytic
at a ∈ E if there exists some r > 0 and a sequence of real coefficients {cn} ⊂ R such that:

(a− r, a+ r) ⊆ E

and for all x ∈ (a− r, a+ r), we have:

f(x) =

∞∑
n=0

cn(x− a)n.

Definition (Smooth Function). Let f : [a, b] → R. We say that f is smooth (infinitely differentiable, or
C∞) if the k-th derivative exists for all k ∈ N. That is,

dkf

dxk
exists for all k ∈ N.

In other words, we write:
f ∈ C∞([a, b] → R).

Corollary. If f : E → R is analytic, then f is smooth and all of its derivatives

dkf

dxk

are analytic as well.
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Corollary (Taylor’s Formula). Let f : E → R be analytic at a ∈ E, so that

f(x) =

∞∑
n=0

cn(x− a)n

on (a− r, a+ r). Then, for every k ∈ N,

f (k)(a) =
dkf

dxk
(a) = k! · ck.

In particular, on (a− r, a+ r),

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Corollary. Suppose f : E → R is analytic at a ∈ E and satisfies

f(x) =

∞∑
n=0

cn(x− a)n =

∞∑
n=0

dn(x− a)n

on some interval (a− r, a+ r). Then, we must have

cn = dn, ∀n.

Proof. By Taylor’s theorem,

cn =
f (n)(a)

n!
= dn.

Fact. If

f(x) =

∞∑
n=0

cn(x− a)n

on (a− r, a+ r), then f is analytic at every x0 ∈ (a− r, a+ r).

Fact. If f and g are analytic at a, then f + g and f − g are also analytic at a.

Definition (Formal Product). Let (cn)
∞
n=0 and (dn)

∞
n=0 be sequences of real numbers. The formal product

of
∑

cn and
∑

dn is given by ( ∞∑
n=0

cn

)
·

( ∞∑
n=0

dn

)
=

∞∑
n=0

en

where

en =

n∑
k=0

ck · dn−k.
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6 Exponential, Log, and Trigonometric Functions

Definition (Exponential Function). For each x ∈ R, we define

exp(x) =

∞∑
n=0

1

n!
xn.

Check: Convergence for all x ∈ R.

Theorem (Properties of the Exponential Function). 1. The series
∑∞

n=0
xn

n! has an infinite radius of con-
vergence and thus converges absolutely for all x ∈ R. Hence, exp is analytic on R.

2. exp is differentiable and
exp′(x) = exp(x).

3. exp is continuous and for any a < b ∈ R, exp is integrable on [a, b], with∫ b

a

exp(t) dt = exp(b)− exp(a).

4. For all x, y ∈ R,
exp(x+ y) = exp(x) exp(y).

5. exp(0) = 1 and for all x,

exp(x) > 0 and exp(−x) =
1

exp(x)
.

6. exp(x) is strictly increasing, i.e.,

x < y ⇒ exp(x) < exp(y).

Definition (Exponential function). Define the exponential function as

e := exp(1) =

∞∑
n=0

1

n!
.

Proposition. If x ∈ Q, then exp(x) = ex.

Proof. We prove the result in three steps.

1. Proof for integer exponents by induction:

We prove by induction on p that exp(p) = ep for p ∈ Z≥0.

Base case: For p = 1,
exp(1) = e = e1

by definition.

Inductive step: Assume exp(p) = ep for some p ≥ 1. Then,

exp(p+ 1) = exp(p) exp(1) = epe = ep+1.

Thus, the result holds for all p ≥ 0.
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2. Proof for all integers:

Suppose p ∈ Z. We already know that exp(p) = ep for p ≥ 0.

If p < 0, we use the functional equation exp(−p) exp(p) = 1, which implies

exp(p) =
1

exp(−p)
=

1

e−p
= ep.

3. Proof for rational exponents:

Suppose x = p
q for some p ∈ Z and q ∈ N. Then,

p = x · q.

Applying the functional equation,

exp(p) = exp(q · x) = exp(x+ x+ · · ·+ x) (q times)

= exp(x) exp(x) . . . exp(x) = (exp(x))q.

Since we know exp(p) = ep, we obtain
ep = (exp(x))q.

Taking the qth root on both sides,
ep/q = exp(x).

Thus, the result holds for all x ∈ Q.

Proposition. For all x ∈ R, we have
exp(x) = ex.

Lemma. Let n ∈ N. Then, for all y ∈
[

1
2n , 2

n
]
, there exists x ∈ R such that

exp(x) = y.

Proposition. The image of the exponential function is

exp(R) = (0,∞).

Corollary. The exponential function
exp : R → (0,∞)

is a bijection (one-to-one correspondence).

Proof. By the previous proposition, we know that the exponential function has image (0,∞). Additionally,
since exp is strictly increasing, it is injective. Hence, exp is bijective.
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Definition (Logarithm). The (natural) logarithm is the function

log : (0,∞) → R

defined by
log(x) = exp−1(x).

In particular, for all x ∈ R and y > 0, we have

log(exp(x)) = x, and exp(log(y)) = y.

Theorem (Inverse Function Theorem (1D)). Let A,B ⊆ R, and suppose f : A → B is a bijection that is
differentiable at x0 with f ′(x0) ̸= 0. Then f−1 is differentiable at f(x0), and

(f−1)′(f(x0)) =
1

f ′(x0)
.

Theorem (Properties of log). (a) For all x ∈ (0,∞),

log′(x) =
1

x
.

Hence, for all 0 < a < b, ∫ b

a

1

x
dx = log(b)− log(a).

(b) For all x, y ∈ (0,∞),
log(xy) = log x+ log y.

(c) log(1) = 0 and for all x > 0,

log

(
1

x

)
= − log(x).

(d) For all x > 0 and y ∈ R,
log(xy) = y log(x).

(e) For all x ∈ (−1, 1),

log(1− x) = −
∞∑

n=1

xn

n
.

In particular,

log(x) =

∞∑
n=1

(−1)n+1

n
(x− 1)n

on (0, 2), so log(x) is analytic at x = 1.

Fact. The function log(x) is analytic on all of x ∈ (0,∞).

Proof. The function 1
x is analytic on (0,∞) as a function from (0,∞) → R. Thus, integrating it will yield a

power series representation for log(x).
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Definition. (Alternative definition of exponentiation) Let a > 0 and b ∈ R. We can define

ab = exp(b · log(a)).

By continuity, this agrees with the usual definition. If rn → b, then

arn = exp(rn · log(a))

and by continuity,
exp(b · log(a)) = ab.

Theorem. (Properties of Sine and Cosine)

(a) For all x ∈ R,
sin2(x) + cos2(x) = 1.

In particular,
sin(x) ∈ [−1, 1], cos(x) ∈ [−1, 1].

(b) The derivatives satisfy
sin′(x) = cos(x), cos′(x) = − sin(x).

(c) The parity properties hold:

sin(−x) = − sin(x), cos(−x) = cos(x).

(d) The addition formulas:
cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x).

(e) At zero,
sin(0) = 0, cos(0) = 1.

Definition. π = inf {x ∈ (0,∞) | sin(x) = 0}.

Remark. Since sin′(c) = cos(c) = 1, we have sin(x) > 0 for x ∈ (0, ϵ). So, π > 0. That is, π is a nonzero
number.

Theorem (Theorem 4.7.5 (Periodicity of Trigonometric Functions)). Let x be a real number.

(a) We have
cos(x+ π) = − cos(x) and sin(x+ π) = − sin(x).

In particular,
cos(x+ 2π) = cos(x), sin(x+ 2π) = sin(x),

i.e., sin and cos are periodic with period 2π.

(b) We have sin(x) = 0 if and only if x/π is an integer.

(c) We have cos(x) = 0 if and only if x/π is an integer plus 1/2.
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Example. Consider the function

f(x) :=

∞∑
n=0

φn cos(3nπx).

This function is continuous on R but differentiable nowhere.
This is an example of the Weierstrass function.

Fact. If f and g are analytic on (a, b) and suppose f, g agree on some subinterval (c, d), then f = g on
(a, b). That is, analytic functions are determined by their behavior in some small interval. This is a kind of
uniqueness result.

⇒ kinda like infinite polynomial interpolation.

Dense Sets

Definition. Let (X, d) be a metric space and let E ⊆ X. We say that E is dense in X if its closure is all
of X, i.e.,

E = X.

Fact. If E is dense, then for every non-empty open set U ⊆ X, we have

U ∩ E ̸= ∅.

Example. Consider (R, dstd):

• Q is dense.

• R \Q is also dense. (Can always find some rational/irrational arbitrarily close.)

Consider (X, ddisc):

• E is dense if and only if E = X.

Recall

Definition. A set A is called countable if there exists an injective function f : N → A.

Example. • Z, Q are countable sets.

• R is uncountable. Hence, so is R \Q.
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Fact. • If An is a countable sequence of sets, then

∞⋃
n=1

An

is countable.

• If A,B are countable, then so is A×B.
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